Effect of histidine on the antimicrobial peptide maculatin 1.1 solution-state NMR and molecular dynamics simulation structures at different protonation states
Marc-Antoine Sani


A
B
Abstract
The role of histidine in a helical peptide with membrane activity was investigated by modifying the parent antimicrobial peptide, maculatin 1.1, into its M2 variant. The M2 sequence has two extra histidines, and some residues were displaced to devise a greater hydrophilic groove. The effect of pH on the secondary structure and interactions with dodecylphosphocholine (DPC) micelles was determined using circular dichroism, solution-state NMR spectroscopy and molecular dynamics (MD) simulations. M2 transitioned from a random coil in buffer to an expected helical conformation in DPC micelles at both neutral and acidic pH, with both structures displaying a continuous hydrophilic groove. However, the helix was slightly bent at pH 7, but with protonated histidines at pH 5, a straight helix was observed. MD simulations showed that M2 was deeper into the micelle core with uncharged histidines at pH 7 and more exposed to water at pH 5. Overall, the M2 peptide showed moderate pH-sensitive behaviour akin to observed known histidine-rich membrane-active peptides, and further investigation within more realistic membrane environments will be necessary to determine its potential for pH-mediated activity.
Keywords: DPC micelle, histidine protonation state, histidine-rich peptide, hydrophobic interactions, molecular dynamics simulation, pH sensitive antimicrobial peptide, solution-state NMR, water exposure.
References
1 Chia BC, Carver JA, Mulhern TD, Bowie JH. Maculatin 1.1, an anti‐microbial peptide from the Australian tree frog, Litoria genimaculata: solution structure and biological activity. Eur J Biochem 2000; 267: 1894-1908.
| Crossref | Google Scholar | PubMed |
2 Rozek T, Waugh RJ, Steinborner ST, Bowie JH, Tyler MJ, Wallace JC. The maculatin peptides from the skin glands of the tree frog Litoria genimaculata: a comparison of the structures and antibacterial activities of maculatin 1.1 and caerin 1.1. J Pept Sci 1998; 4: 111-115.
| Crossref | Google Scholar | PubMed |
3 Sani MA, Henriques ST, Weber D, Separovic F. Bacteria may cope differently from similar membrane damage caused by the Australian tree frog antimicrobial peptide maculatin 1.1. J Biol Chem 2015; 290: 19853-19862.
| Crossref | Google Scholar | PubMed |
4 Sani MA, Whitwell TC, Gehman JD, Robins-Browne RM, Pantarat N, Attard TJ, et al. Maculatin 1.1 disrupts Staphylococcus aureus lipid membranes via a pore mechanism. Antimicrob Agents Chemother 2013; 57: 3593-3600.
| Crossref | Google Scholar | PubMed |
5 Gaspar D, Veiga AS, Castanho MA. From antimicrobial to anticancer peptides. A review. Front Microbiol 2013; 4: 294.
| Crossref | Google Scholar | PubMed |
6 Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 2008; 1778: 357-375.
| Crossref | Google Scholar | PubMed |
7 Chinnadurai RK, Khan N, Meghwanshi GK, Ponne S, Althobiti M, Kumar R. Current research status of anti-cancer peptides: mechanism of action, production, and clinical applications. Biomed Pharmacother 2023; 164: 114996.
| Crossref | Google Scholar | PubMed |
8 Sani M-A, Separovic F. How membrane-active peptides get into lipid membranes. Acc Chem Res 2016; 49: 1130-1138.
| Crossref | Google Scholar | PubMed |
9 Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel) 2013; 6: 1543-1575.
| Crossref | Google Scholar | PubMed |
10 Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front Microbiol 2020; 11: 582779.
| Crossref | Google Scholar | PubMed |
11 Hollmann A, Martinez M, Maturana P, Semorile LC, Maffia PC. Antimicrobial peptides: interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem 2018; 6: 204.
| Crossref | Google Scholar | PubMed |
12 Overall SA, Zhu S, Hanssen E, Separovic F, Sani MA. In situ monitoring of bacteria under antimicrobial stress using 31P solid-state NMR. Int J Mol Sci 2019; 20: 181.
| Crossref | Google Scholar | PubMed |
13 Sani M-A, Whitwell TC, Separovic F. Lipid composition regulates the conformation and insertion of the antimicrobial peptide maculatin 1.1. Biochim Biophys Acta 2012; 1818: 205-211.
| Crossref | Google Scholar | PubMed |
14 Zhu S, Li W, O’Brien-Simpson N, Separovic F, Sani MA. C-terminus amidation influences biological activity and membrane interaction of maculatin 1.1. Amino Acids 2021; 53: 769-777.
| Crossref | Google Scholar | PubMed |
15 Sani M-A, Le Brun AP, Separovic F. The antimicrobial peptide maculatin self assembles in parallel to form a pore in phospholipid bilayers. Biochim Biophys Acta Biomembr 2020; 1862: 183204.
| Crossref | Google Scholar | PubMed |
16 Sani MA, Gagne E, Gehman JD, Whitwell TC, Separovic F. Dye-release assay for investigation of antimicrobial peptide activity in a competitive lipid environment. Eur Biophys J 2014; 43: 445-450.
| Crossref | Google Scholar | PubMed |
17 Sani MA, Lee TH, Aguilar MI, Separovic F. Proline-15 creates an amphipathic wedge in maculatin 1.1 peptides that drives lipid membrane disruption. Biochim Biophys Acta 2015; 1848: 2277-2289.
| Crossref | Google Scholar | PubMed |
18 Tuerkova A, Kabelka I, Králová T, Sukeník L, Pokorná Š, Hof M, et al. Effect of helical kink in antimicrobial peptides on membrane pore formation. Elife 2020; 9: e47946.
| Crossref | Google Scholar | PubMed |
19 Zhang L, Benz R, Hancock RE. Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides. Biochemistry 1999; 38: 8102-8111.
| Crossref | Google Scholar | PubMed |
20 Georgescu J, Munhoz VH, Bechinger B. NMR structures of the histidine-rich peptide LAH4 in micellar environments: membrane insertion, ph-dependent mode of antimicrobial action, and DNA transfection. Biophys J 2010; 99: 2507-2515.
| Crossref | Google Scholar | PubMed |
21 Moulay G, Leborgne C, Mason AJ, Aisenbrey C, Kichler A, Bechinger B. Histidine-rich designer peptides of the LAH4 family promote cell delivery of a multitude of cargo. J Pept Sci 2017; 23: 320-328.
| Crossref | Google Scholar | PubMed |
22 Kalani MR, Moradi A, Moradi M, Tajkhorshid E. Characterizing a histidine switch controlling pH-dependent conformational changes of the influenza virus hemagglutinin. Biophys J 2013; 105: 993-1003.
| Crossref | Google Scholar | PubMed |
23 Martfeld AN, Greathouse DV, Koeppe RE, 2nd. Ionization properties of histidine residues in the lipid bilayer membrane environment. J Biol Chem 2016; 291: 19146-19156.
| Crossref | Google Scholar | PubMed |
24 Hitchner MA, Santiago-Ortiz LE, Necelis MR, Shirley DJ, Palmer TJ, Tarnawsky KE, et al. Activity and characterization of a pH-sensitive antimicrobial peptide. Biochim Biophys Acta Biomembr 2019; 1861: 182984.
| Crossref | Google Scholar | PubMed |
25 Kacprzyk L, Rydengård V, Mörgelin M, Davoudi M, Pasupuleti M, Malmsten M, et al. Antimicrobial activity of histidine-rich peptides is dependent on acidic conditions. Biochim Biophys Acta 2007; 1768: 2667-2680.
| Crossref | Google Scholar | PubMed |
26 Mason AJ, Gasnier C, Kichler A, Prévost G, Aunis D, Metz-Boutigue MH, Bechinger B. Enhanced membrane disruption and antibiotic action against pathogenic bacteria by designed histidine-rich peptides at acidic pH. Antimicrob Agents Chemother 2006; 50: 3305-3311.
| Crossref | Google Scholar | PubMed |
27 Mihailescu M, Sorci M, Seckute J, Silin VI, Hammer J, Perrin BS, Jr, et al. Structure and function in antimicrobial piscidins: histidine position, directionality of membrane insertion, and pH-dependent permeabilization. J Am Chem Soc 2019; 141: 9837-9853.
| Crossref | Google Scholar | PubMed |
28 Fernandez DI, Sani M-A, Separovic F. Interactions of the antimicrobial peptide maculatin 1.1 and analogues with phospholipid bilayers. Aust J Chem 2011; 64: 798-805.
| Crossref | Google Scholar |
29 Le Brun AP, Zhu S, Sani M-A, Separovic F. The location of the antimicrobial peptide maculatin 1.1 in model bacterial membranes. Front Chem 2020; 8: 572.
| Crossref | Google Scholar | PubMed |
30 Separovic F, Hofferek V, Duff AP, McConville MJ, Sani MA. In-cell DNP NMR reveals multiple targeting effect of antimicrobial peptide. J Struct Biol X 2022; 6: 100074.
| Crossref | Google Scholar | PubMed |
31 Separovic F, Keizer DW, Sani MA. In-cell solid-state NMR studies of antimicrobial peptides. Front Med Technol 2020; 2: 610203.
| Crossref | Google Scholar | PubMed |
32 Malik E, Dennison SR, Harris F, Phoenix DA. pH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals (Basel) 2016; 9: 67.
| Crossref | Google Scholar | PubMed |
33 Sani MA, Loudet C, Gröbner G, Dufourc EJ. Pro-apoptotic BAX-alpha1 synthesis and evidence for beta-sheet to alpha-helix conformational change as triggered by negatively charged lipid membranes. J Pept Sci 2007; 13: 100-106.
| Crossref | Google Scholar | PubMed |
34 Skinner SP, Fogh RH, Boucher W, Ragan TJ, Mureddu LG, Vuister GW. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis. J Biomol NMR 2016; 66: 111-124.
| Crossref | Google Scholar | PubMed |
35 Skinner SP, Goult BT, Fogh RH, Boucher W, Stevens TJ, Laue ED, Vuister GW. Structure calculation, refinement and validation using CcpNmr analysis. Acta Crystallogr D Biol Crystallogr 2015; 71: 154-161.
| Crossref | Google Scholar | PubMed |
36 Shen Y, Bax A. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N. Methods Mol Biol 2015; 1260: 17-32.
| Crossref | Google Scholar | PubMed |
37 Bermejo GA, Tjandra N, Clore GM, Schwieters CD. Xplor-NIH: better parameters and protocols for NMR protein structure determination. Protein Sci 2024; 33: e4922.
| Crossref | Google Scholar | PubMed |
38 Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM. The Xplor-NIH NMR molecular structure determination package. J Magn Reson 2003; 160: 65-73.
| Crossref | Google Scholar | PubMed |
39 Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 2007; 35: W375-W383.
| Crossref | Google Scholar | PubMed |
40 Hintze BJ, Lewis SM, Richardson JS, Richardson DC. MolProbity’s ultimate rotamer-library distributions for model validation. Proteins 2016; 84: 1177-1189.
| Crossref | Google Scholar | PubMed |
41 Lee J, Hitzenberger M, Rieger M, Kern NR, Zacharias M, Im W. CHARMM-GUI supports the Amber force fields. J Chem Phys 2020; 153: 035103.
| Crossref | Google Scholar | PubMed |
42 Li Y, Liu J, Gumbart JC. Preparing membrane proteins for simulation using CHARMM-GUI. Methods Mol Biol 2021; 2302: 237-251.
| Crossref | Google Scholar | PubMed |
43 Case DA, Cheatham TE, 3rd, Darden T, Gohlke H, Luo R, Merz KM, Jr, et al. The Amber biomolecular simulation programs. J Comput Chem 2005; 26: 1668-1688.
| Crossref | Google Scholar | PubMed |
44 Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996; 14: 33-38.
| Crossref | Google Scholar | PubMed |
45 Schwieters CD, Clore GM. The VMD-Xplor visualization package for NMR structure refinement. J Magn Reson 2001; 149: 239-244.
| Crossref | Google Scholar | PubMed |
46 Case DA, Aktulga HM, Belfon K, Cerutti DS, Cisneros GA, Cruzeiro VWD, et al. AmberTools. J Chem Inf Model 2023; 63: 6183-6191.
| Crossref | Google Scholar | PubMed |