Shaping the future of constrained peptides and compact proteins in drug discovery
Sven Ullrich
A
![]() Sven Ullrich is a Feodor Lynen Research Fellow (Humboldt Foundation) at the University of Tokyo, Japan. He holds a degree in pharmacy from Heidelberg University, Germany, and a PhD in chemistry from the Australian National University. During his doctoral studies, he was a visiting student at the University of Alberta, Canada. His research focuses on modified peptides and proteins in genetically encoded libraries for drug discovery. He received the Dr Elizabeth Schram Young Investigator Award at the 27th American Peptide Symposium (2022), was a selected participant at the Global Young Scientists Summit in Singapore (2023) and was recognised as part of the CAS Future Leaders Top 100 initiative (2024). For his graduate work, he was awarded both the John Carver Award (ACT Branch, 2024) and the Cornforth Medal (National, 2024) by the Royal Australian Chemical Institute. |
Abstract
Constrained peptides and compact proteins are potent alternatives to conventional drug modalities in academia and industry. Located in the chemical space between small molecules and classical biologics, these drug formats feature highly modular, conformationally constrained turns and loops that can be accessed through rational design, selection-based screening or computational discovery. The amino acid-derived biopolymers can engage comparatively featureless protein surfaces more effectively than low molecular weight compounds, yet at the same time offer greater potential to reach intracellular targets than larger biologics. This combination allows them to address medicinal chemistry challenges that conventional approaches struggle to solve. In this brief review, selected advances in the discovery and development of such structures are highlighted, especially those where screening of genetically encoded or synthetic libraries played a central role. Several recent examples of rational design and computationally generated peptide and protein scaffolds are also discussed, including those driven by machine learning and artificial intelligence. Across these strategies, all case studies describe the successful identification and refinement of cyclic peptides or compact proteins with antibody-like binding as promising lead structures. As the presented examples cover a wide range of structural topologies and medicinally relevant targets, they reflect the growing importance of cyclic peptides and compact proteins as new molecular modalities for drug discovery and development.
Keywords: antibody-mimetic proteins, artificial intelligence, cyclic peptides, drug design, encoded libraries, macrocyclisation, miniproteins, nanobodies, rational design, therapeutics.
![]() Sven Ullrich is a Feodor Lynen Research Fellow (Humboldt Foundation) at the University of Tokyo, Japan. He holds a degree in pharmacy from Heidelberg University, Germany, and a PhD in chemistry from the Australian National University. During his doctoral studies, he was a visiting student at the University of Alberta, Canada. His research focuses on modified peptides and proteins in genetically encoded libraries for drug discovery. He received the Dr Elizabeth Schram Young Investigator Award at the 27th American Peptide Symposium (2022), was a selected participant at the Global Young Scientists Summit in Singapore (2023) and was recognised as part of the CAS Future Leaders Top 100 initiative (2024). For his graduate work, he was awarded both the John Carver Award (ACT Branch, 2024) and the Cornforth Medal (National, 2024) by the Royal Australian Chemical Institute. |
References
1 Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, et al. New modalities for challenging targets in drug discovery. Angew Chem Int Ed 2017; 56: 10294-10323.
| Crossref | Google Scholar | PubMed |
2 Jing X, Jin K. A gold mine for drug discovery: strategies to develop cyclic peptides into therapies. Med Res Rev 2019; 40: 753-810.
| Crossref | Google Scholar | PubMed |
3 Crook ZR, Nairn NW, Olson JM. Miniproteins as a powerful modality in drug development. Trends Biochem Sci 2020; 45: 332-346.
| Crossref | Google Scholar | PubMed |
4 Makurvet FD. Biologics vs. small molecules: drug costs and patient access. Med Drug Discov 2021; 9: 100075.
| Crossref | Google Scholar |
5 Ngo HX, Garneau-Tsodikova S. What are the drugs of the future? MedChemComm 2018; 9: 757-758.
| Crossref | Google Scholar | PubMed |
6 Li K, Crews CM. PROTACs: past, present and future. Chem Soc Rev 2022; 51: 5214-5236.
| Crossref | Google Scholar | PubMed |
7 He S, Dong G, Cheng J, Wu Y, Sheng C. Strategies for designing proteolysis targeting chimaeras (PROTACs). Med Res Rev 2022; 42: 1280-1342.
| Crossref | Google Scholar | PubMed |
8 Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR, et al. The current landscape of nucleic acid therapeutics. Nat Nanotechnol 2021; 16: 630-643.
| Crossref | Google Scholar | PubMed |
9 Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther 2024; 9: 316.
| Crossref | Google Scholar | PubMed |
10 Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther 2022; 7: 93.
| Crossref | Google Scholar | PubMed |
11 Lindberg J, Nilvebrant J, Nygren PÅ, Lehmann F. Progress and future directions with peptide-drug conjugates for targeted cancer therapy. Molecules 2021; 26: 6042.
| Crossref | Google Scholar | PubMed |
12 Muttenthaler M, King GF, Adams DJ, Alewood PF. Trends in peptide drug discovery. Nat Rev Drug Discov 2021; 20: 309-325.
| Crossref | Google Scholar | PubMed |
13 Ji X, Nielsen AL, Heinis C. Cyclic peptides for drug development. Angew Chem Int Ed 2023; 63: e202308251.
| Crossref | Google Scholar | PubMed |
14 Zhang S, Wu L, Dang M. Antibody mimetics: the next generation antibody engineering, a retrospective and prospective analysis. Biotech J 2023; 19: e2300532.
| Crossref | Google Scholar | PubMed |
15 Ciesiołkiewicz A, Lizandra Perez J, Berlicki Ł. Miniproteins in medicinal chemistry. Bioorg Med Chem Lett 2022; 71: 128806.
| Crossref | Google Scholar | PubMed |
16 Blanco M-J, Gardinier KM. New chemical modalities and strategic thinking in early drug discovery. ACS Med Chem Lett 2020; 11: 228-231.
| Crossref | Google Scholar | PubMed |
17 Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein–protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9: 341.
| Crossref | Google Scholar | PubMed |
18 Colas K, Bindl D, Suga H. Selection of nucleotide-encoded mass libraries of macrocyclic peptides for inaccessible drug targets. Chem Rev 2024; 124: 12213-12241.
| Crossref | Google Scholar | PubMed |
19 Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling undruggable targets with designer peptidomimetics and synthetic biologics. Chem Rev 2024; 124: 13020-13093.
| Crossref | Google Scholar | PubMed |
20 Zorzi A, Deyle K, Heinis C. Cyclic peptide therapeutics: past, present and future. Curr Opin Chem Biol 2017; 38: 24-29.
| Crossref | Google Scholar | PubMed |
21 Vinogradov AA, Yin Y, Suga H. Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J Am Chem Soc 2019; 141: 4167-4181.
| Crossref | Google Scholar | PubMed |
22 Schmidt M, Toplak A, Quaedflieg PJLM, van Maarseveen JH, Nuijens T. Enzyme-catalyzed peptide cyclization. Drug Discov Today Technol 2017; 26: 11-16.
| Crossref | Google Scholar | PubMed |
23 Lau YH, de Andrade P, Wu Y, Spring DR. Peptide stapling techniques based on different macrocyclisation chemistries. Chem Soc Rev 2015; 44: 91-102.
| Crossref | Google Scholar | PubMed |
24 Moiola M, Memeo MG, Quadrelli P. Stapled peptides: a useful improvement for peptide-based drugs. Molecules 2019; 24: 3654.
| Crossref | Google Scholar | PubMed |
25 Baeriswyl V, Heinis C. Polycyclic peptide therapeutics. ChemMedChem 2013; 8: 377-384.
| Crossref | Google Scholar | PubMed |
26 Rhodes CA, Pei D. Bicyclic peptides as next‐generation therapeutics. Chem Eur J 2017; 23: 12690-12703.
| Crossref | Google Scholar | PubMed |
27 Thombare VJ, Hutton CA. Bridged bicyclic peptides: structure and function. Pept Sci 2018; 110: e24057.
| Crossref | Google Scholar |
28 Ullrich S, Nitsche C. Bicyclic peptides: paving the road for therapeutics of the future. Pept Sci 2024; 116: e24326.
| Crossref | Google Scholar |
29 de Veer SJ, Kan M-W, Craik DJ. Cyclotides: from structure to function. Chem Rev 2019; 119: 12375-12421.
| Crossref | Google Scholar | PubMed |
30 Imai M, Colas K, Suga H. Protein grafting techniques: from peptide epitopes to lasso‐grafted neobiologics. ChemPlusChem 2024; 89: e202400152.
| Crossref | Google Scholar | PubMed |
31 Akkapeddi P, Teng KW, Koide S. Monobodies as tool biologics for accelerating target validation and druggable site discovery. RSC Med Chem 2021; 12: 1839-1853.
| Crossref | Google Scholar | PubMed |
32 Muyldermans S. Applications of nanobodies. Ann Rev Anim Biosci 2021; 9: 401-421.
| Crossref | Google Scholar |
33 Cary DR, Ohuchi M, Reid PC, Masuya K. Constrained peptides in drug discovery and development. J Synth Org Chem Jpn 2017; 75: 1171.
| Crossref | Google Scholar |
34 Angelini A, Cendron L, Chen S, Touati J, Winter G, Zanotti G, Heinis C. Bicyclic peptide inhibitor reveals large contact interface with a protease target. ACS Chem Biol 2012; 7: 817-821.
| Crossref | Google Scholar | PubMed |
35 Groß A, Hashimoto C, Sticht H, Eichler J. Synthetic peptides as protein mimics. Front Bioeng Biotechnol 2016; 3: 211.
| Crossref | Google Scholar | PubMed |
36 Mikol V, Kallen J, Pflügl G, Walkinshaw MD. X-Ray structure of a monomeric cyclophilin A-cyclosporin A crystal complex at 2.1 Å resolution. J Mol Biol 1993; 234: 1119-1130.
| Crossref | Google Scholar | PubMed |
37 Guerlavais V, Sawyer TK, Carvajal L, Chang YS, Graves B, Ren J-G, et al. Discovery of sulanemadlin (ALRN-6924), the first cell-permeating, stabilized α-helical peptide in clinical development. J Med Chem 2023; 66: 9401-9417.
| Crossref | Google Scholar | PubMed |
38 Liu W, de Veer SJ, Huang Y-H, Sengoku T, Okada C, Ogata K, Zdenek CN, Fry BG, Swedberg JE, Passioura T, Craik DJ, Suga H. An ultrapotent and selective cyclic peptide inhibitor of human β-factor XIIa in a cyclotide scaffold. J Am Chem Soc 2021; 143: 18481-18489.
| Crossref | Google Scholar | PubMed |
39 Berger S, Seeger F, Yu T-Y, Aydin M, Yang H, Rosenblum D, Guenin-Macé L, Glassman C, Arguinchona L, Sniezek C, Blackstone A, Carter L, Ravichandran R, Ahlrichs M, Murphy M, Swanson Pultz I, Kang A, Bera AK, Stewart L, Garcia KC, Baker D. Preclinical proof of principle for orally delivered Th17 antagonist miniproteins. Cell 2024; 187: 4305-4317.
| Crossref | Google Scholar | PubMed |
40 Kawakami N, Sato H, Terasaka N, Matsumoto K, Suga H. MET‐Activating ubiquitin multimers. Angew Chem Int Ed 2023; 62: e202307157.
| Crossref | Google Scholar | PubMed |
41 Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods 2022; 19: 679-682.
| Crossref | Google Scholar | PubMed |
42 Esparza TJ, Chen Y, Martin NP, Bielefeldt-Ohmann H, Bowen RA, Tolbert WD, et al. Nebulized delivery of a broadly neutralizing SARS-CoV-2 RBD-specific nanobody prevents clinical, virological, and pathological disease in a Syrian hamster model of COVID-19. mAbs 2022; 14: 2047144.
| Crossref | Google Scholar | PubMed |
43 Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, Morris JH, et al. UCSF ChimeraX: tools for structure building and analysis. Prot Sci 2023; 32: e4792.
| Crossref | Google Scholar | PubMed |
44 Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, et al. Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7: 48.
| Crossref | Google Scholar | PubMed |
45 Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodies: chemical functionalization strategies and intracellular applications. Angew Chem Int Ed 2018; 57: 2314-2333.
| Crossref | Google Scholar | PubMed |
46 Wang H, Dawber RS, Zhang P, Walko M, Wilson AJ, Wang X. Peptide-based inhibitors of protein–protein interactions: biophysical, structural and cellular consequences of introducing a constraint. Chem Sci 2021; 12: 5977-5993.
| Crossref | Google Scholar | PubMed |
47 Hong SH, Nguyen T, Ongkingco JF, Nazzaro A, Arora PS. From concepts to inhibitors: a blueprint for targeting protein–protein interactions. Chem Rev 2025; 125: 6819-6869.
| Crossref | Google Scholar | PubMed |
48 Philippe GJB, Craik DJ, Henriques ST. Converting peptides into drugs targeting intracellular protein–protein interactions. Drug Discov Today 2021; 26: 1521-1531.
| Crossref | Google Scholar | PubMed |
49 Ellenbroek BD, Kahler JP, Arella D, Lin C, Jespers W, Züger EAK, Drukker M, Pomplun SJ. Development of DuoMYC: a synthetic cell penetrant miniprotein that efficiently inhibits the oncogenic transcription factor MYC. Angew Chem Int Ed 2025; 64: e202416082.
| Crossref | Google Scholar | PubMed |
50 Nielsen AL, Bartling CRO, Zarda A, De Sadeleer N, Neeser RM, Schwaller P, Strømgaard K, Heinis C. Bulk measurement of membrane permeability for random cyclic peptides in living cells to guide drug development. Angew Chem Int Ed 2025; 64: e202500493.
| Crossref | Google Scholar | PubMed |
51 White CJ, Yudin AK. Contemporary strategies for peptide macrocyclization. Nat Chem 2011; 3: 509-524.
| Crossref | Google Scholar | PubMed |
52 Reguera L, Rivera DG. Multicomponent reaction toolbox for peptide macrocyclization and stapling. Chem Rev 2019; 119: 9836-9860.
| Crossref | Google Scholar | PubMed |
53 Chow HY, Zhang Y, Matheson E, Li X. Ligation technologies for the synthesis of cyclic peptides. Chem Rev 2019; 119: 9971-10001.
| Crossref | Google Scholar | PubMed |
54 Wills R, Adebomi V, Raj M. Site-selective peptide macrocyclization. ChemBioChem 2021; 22: 52-62.
| Crossref | Google Scholar | PubMed |
55 Hayes HC, Luk LYP, Tsai Y-H. Approaches for peptide and protein cyclisation. Org Biomol Chem 2021; 19: 3983-4001.
| Crossref | Google Scholar | PubMed |
56 He J, Ghosh P, Nitsche C. Biocompatible strategies for peptide macrocyclisation. Chem Sci 2024; 15: 2300-2322.
| Crossref | Google Scholar | PubMed |
57 Heinis C, Winter G. Encoded libraries of chemically modified peptides. Curr Opin Chem Biol 2015; 26: 89-98.
| Crossref | Google Scholar | PubMed |
58 Dotter H, Boll M, Eder M, Eder A-C. Library and post-translational modifications of peptide-based display systems. Biotech Adv 2021; 47: 107699.
| Crossref | Google Scholar |
59 Ullrich S, Kumaresan S, Rahman MG, Panda B, Morewood R, Nitsche C. Assembling branched and macrocyclic peptides on proteins. Chem Commun 2025; 61: 3009-3012.
| Crossref | Google Scholar | PubMed |
60 Huang P-S, Boyken SE, Baker D. The coming of age of de novo protein design. Nature 2016; 537: 320-327.
| Crossref | Google Scholar | PubMed |
61 Albanese KI, Barbe S, Tagami S, Woolfson DN, Schiex T. Computational protein design. Nat Rev Methods Primers 2025; 5: 13.
| Crossref | Google Scholar |
62 Pacesa M, Nickel L, Schellhaas C, Schmidt J, Pyatova E, Kissling L, et al. One-shot design of functional protein binders with BindCraft. Nature 2025; 646: 483-492.
| Crossref | Google Scholar | PubMed |
63 Niu W, Guo J. Cellular site-specific incorporation of noncanonical amino acids in synthetic biology. Chem Rev 2024; 124: 10577-10617.
| Crossref | Google Scholar | PubMed |
64 Rezhdo A, Islam M, Huang M, Van Deventer JA. Future prospects for noncanonical amino acids in biological therapeutics. Curr Opin Biotechnol 2019; 60: 168-178.
| Crossref | Google Scholar | PubMed |
65 Goto Y, Suga H. The RaPID platform for the discovery of pseudo-natural macrocyclic peptides. Acc Chem Res 2021; 54: 3604-3617.
| Crossref | Google Scholar | PubMed |
66 Zhou KZQ, Obexer R. Non‐canonical amino acids for engineering peptides and proteins with new functions. Isr J Chem 2024; 64: e202400006.
| Crossref | Google Scholar |
67 Grossmann TN, Durukan C. From protein structures to functional biomimetics. Synlett 2024; 36: 119.
| Crossref | Google Scholar |
68 Sohrabi C, Foster A, Tavassoli A. Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery. Nat Rev Chem 2020; 4: 90-101.
| Crossref | Google Scholar | PubMed |
69 You S, McIntyre G, Passioura T. The coming of age of cyclic peptide drugs: an update on discovery technologies. Expert Opin Drug Discov 2024; 19: 961-973.
| Crossref | Google Scholar | PubMed |
70 Fan Y, Feng R, Zhang X, Wang Z-L, Xiong F, Zhang S, et al. Encoding and display technologies for combinatorial libraries in drug discovery: the coming of age from biology to therapy. Acta Pharm Sin B 2024; 14: 3362-3384.
| Crossref | Google Scholar | PubMed |
71 Li X, Craven TW, Levine PM. Cyclic peptide screening methods for preclinical drug discovery. J Med Chem 2022; 65: 11913-11926.
| Crossref | Google Scholar | PubMed |
72 Dockerill M, Winssinger N. DNA‐encoded libraries: towards harnessing their full power with Darwinian evolution. Angew Chem Int Ed 2022; 62: e202215542.
| Crossref | Google Scholar | PubMed |
73 Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G. Phage display and other peptide display technologies. FEMS Microbiol Rev 2022; 46: fuab052.
| Crossref | Google Scholar | PubMed |
74 Huang Y, Wiedmann MM, Suga H. RNA display methods for the discovery of bioactive macrocycles. Chem Rev 2018; 119: 10360-10391.
| Crossref | Google Scholar | PubMed |
75 Hampton JT, Liu WR. Diversification of phage-displayed peptide libraries with noncanonical amino acid mutagenesis and chemical modification. Chem Rev 2024; 124: 6051-6077.
| Crossref | Google Scholar | PubMed |
76 Chen FJ, Pinnette N, Gao J. Strategies for the construction of multicyclic phage display libraries. ChemBioChem 2024; 25: e202400072.
| Crossref | Google Scholar | PubMed |
77 Katoh T, Suga H. Reprogramming the genetic code with flexizymes. Nat Rev Chem 2024; 8: 879-892.
| Crossref | Google Scholar | PubMed |
78 Passioura T, Suga H. A RaPID way to discover nonstandard macrocyclic peptide modulators of drug targets. Chem Commun 2017; 53: 1931-1940.
| Crossref | Google Scholar | PubMed |
79 Suga H. Max‐Bergmann award lecture: a RaPID way to discover bioactive nonstandard peptides assisted by the flexizyme and FIT systems. J Pept Sci 2018; 24: e3055.
| Crossref | Google Scholar | PubMed |
80 Tavassoli A. SICLOPPS cyclic peptide libraries in drug discovery. Curr Opin Chem Biol 2017; 38: 30-35.
| Crossref | Google Scholar | PubMed |
81 Xie J, Yap K, de Veer SJ, Edwardraja S, Durek T, Trau M, et al. High-throughput enrichment of functional disulfide-rich peptides by droplet microfluidics. Lab Chip 2025; 25: 3525-3536.
| Crossref | Google Scholar | PubMed |
82 Linciano S, Mazzocato Y, Romanyuk Z, Vascon F, Farrera-Soler L, Will E, et al. Screening macrocyclic peptide libraries by yeast display allows control of selection process and affinity ranking. Nat Commun 2025; 16: 5367.
| Crossref | Google Scholar | PubMed |
83 Brennan A, Lovell S, Vance KW, Mason JM. An intracellular peptide library screening platform identifies irreversible covalent transcription factor inhibitors. Adv Sci 2025; 12: e2416963.
| Crossref | Google Scholar | PubMed |
84 Plais L, Scheuermann J. Macrocyclic DNA-encoded chemical libraries: a historical perspective. RSC Chem Biol 2022; 3: 7-17.
| Crossref | Google Scholar | PubMed |
85 Merz ML, Habeshian S, Li B, David J, Nielsen AL, Ji X, Il Khwildy K, Duany Benitez MM, Phothirath P, Heinis C. De novo development of small cyclic peptides that are orally bioavailable. Nat Chem Biol 2023; 20: 624-633.
| Crossref | Google Scholar | PubMed |
86 Monty OBC, Simmons N, Chamakuri S, Matzuk MM, Young DW. Solution-phase Fmoc-based peptide synthesis for DNA-encoded chemical libraries: reaction conditions, protecting group strategies, and pitfalls. ACS Comb Sci 2020; 22: 833-843.
| Crossref | Google Scholar | PubMed |
87 Sunkari YK, Nguyen T-L, Siripuram VK, Flajolet M. Impact of organic chemistry conditions on DNA durability in the context of DNA-encoded library technology. iScience 2023; 26: 107573.
| Crossref | Google Scholar | PubMed |
88 Habeshian S, Merz ML, Sangouard G, Mothukuri GK, Schüttel M, Bognár Z, Díaz-Perlas C, Vesin J, Bortoli Chapalay J, Turcatti G, Cendron L, Angelini A, Heinis C. Synthesis and direct assay of large macrocycle diversities by combinatorial late-stage modification at picomole scale. Nat Commun 2022; 13: 3823.
| Crossref | Google Scholar | PubMed |
89 Koh LQ, Lim YW, Gates ZP. Affinity selection from synthetic peptide libraries enabled by de novo MS/MS sequencing. Int J Pept Res Ther 2022; 28: 62.
| Crossref | Google Scholar |
90 Nolan MD, Schüttel M, Scanlan EM, Nielsen AL. Nanomole-scale photochemical thiol-ene chemistry for high-throughput late-stage diversification of peptide macrocycles. Pept Sci 2024; 116: e24310.
| Crossref | Google Scholar |
91 Iskandar SE, Chiou LF, Leisner TM, Shell DJ, Norris-Drouin JL, Vaziri C, Pearce KH, Bowers AA. Identification of covalent cyclic peptide inhibitors in mRNA display. J Am Chem Soc 2023; 145: 15065-15070.
| Crossref | Google Scholar | PubMed |
92 Velcicky J, Cremosnik G, Scheufler C, Meier P, Wirth E, Felber R, et al. Discovery of selective low molecular weight interleukin-36 receptor antagonists by encoded library technologies. Nat Commun 2025; 16: 1669.
| Crossref | Google Scholar | PubMed |
93 Rettie SA, Juergens D, Adebomi V, Bueso YF, Zhao Q, Leveille AN, Liu A, Bera AK, Wilms JA, Üffing A, Kang A, Brackenbrough E, Lamb M, Gerben SR, Murray A, Levine PM, Schneider M, Vasireddy V, Ovchinnikov S, Weiergräber OH, Willbold D, Kritzer JA, Mougous JD, Baker D, DiMaio F, Bhardwaj G. Accurate de novo design of high-affinity protein-binding macrocycles using deep learning. Nat Chem Biol 2025; [Published online 20 June 2025].
| Crossref | Google Scholar | PubMed |
94 Yan K, Miskolzie M, Banales Mejia F, Peng C, Ekanayake AI, Atrazhev A, Cao J, Maly DJ, Derda R. Late-stage reshaping of phage-displayed libraries to macrocyclic and bicyclic landscapes using a multipurpose linchpin. J Am Chem Soc 2024; 147: 789-800.
| Crossref | Google Scholar | PubMed |
95 Heinis C, Rutherford T, Freund S, Winter G. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat Chem Biol 2009; 5: 502-507.
| Crossref | Google Scholar | PubMed |
96 Ekanayake AI, Sobze L, Kelich P, Youk J, Bennett NJ, Mukherjee R, et al. Genetically encoded fragment-based discovery from phage-displayed macrocyclic libraries with genetically encoded unnatural pharmacophores. J Am Chem Soc 2021; 143: 5497-5507.
| Crossref | Google Scholar | PubMed |
97 Alcock LJ, Gao T, Bythell-Douglas R, Gao J, Krishna Sudhakar H, Huang T, et al. Potent cyclic peptide inhibitors disrupt the FANCM–RMI interaction. J Med Chem 2025; 68: 12615-12625.
| Crossref | Google Scholar | PubMed |
98 Katzy RE, van Neer RHP, Ferraz MJ, Nicolai K, Passioura T, Suga H, et al. Development of selective nanomolar cyclic peptide ligands as GBA1 enzyme stabilisers. RSC Chem Biol 2025; 6: 563-570.
| Crossref | Google Scholar | PubMed |
99 Jiramongkol Y, Patel K, Johansen-Leete J, Maxwell JWC, Chang Y, Du JJ, et al. An mRNA-display derived cyclic peptide scaffold reveals the substrate binding interactions of an N-terminal cysteine oxidase. Nat Commun 2025; 16: 4761.
| Crossref | Google Scholar | PubMed |
100 Mathiesen IR, Calder EDD, Kunzelmann S, Walport LJ. Discovering covalent cyclic peptide inhibitors of peptidyl arginine deiminase 4 (PADI4) using mRNA-display with a genetically encoded electrophilic warhead. Commun Chem 2024; 7: 304.
| Crossref | Google Scholar | PubMed |
101 Lan T, Peng C, Yao X, Chan RST, Wei T, Rupanya A, et al. Discovery of thioether-cyclized macrocyclic covalent Inhibitors by mRNA display. J Am Chem Soc 2024; 146: 24053-24060.
| Crossref | Google Scholar | PubMed |
102 Baillie TA. Targeted covalent inhibitors for drug design. Angew Chem Int Ed 2016; 55: 13408-13421.
| Crossref | Google Scholar | PubMed |
103 Boike L, Henning NJ, Nomura DK. Advances in covalent drug discovery. Nat Rev Drug Discov 2022; 21: 881-898.
| Crossref | Google Scholar | PubMed |
104 Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and re-emerging warheads for targeted covalent inhibitors: an update. J Med Chem 2024; 67: 7668-7758.
| Crossref | Google Scholar | PubMed |
105 Kim G, Grams RJ, Hsu K-L. Advancing covalent ligand and drug discovery beyond cysteine. Chem Rev 2025; 125: 6653-6684.
| Crossref | Google Scholar | PubMed |
106 Wang S, Faucher FF, Bertolini M, Kim H, Yu B, Cao L, et al. Identification of covalent cyclic peptide inhibitors targeting protein–protein interactions using phage display. J Am Chem Soc 2025; 147(9): 7461-7475.
| Crossref | Google Scholar | PubMed |
107 Ghareeb H, Yi Li C, Shenoy A, Rotenberg N, Shifman JM, Katoh T, Sagi I, Suga H, Metanis N. Mirror‐image random nonstandard peptides integrated discovery (MI‐RaPID) technology yields highly stable and selective macrocyclic peptide inhibitors for matrix metallopeptidase 7. Angew Chem Int Ed 2024; 64: e202414256.
| Crossref | Google Scholar | PubMed |
108 Zhang BB, Harrison K, Zhong Y, Maxwell JWC, Ford DJ, Calvey LP, So SS, Peterson FC, Volkman BF, Stone MJ, Bhusal RP, Kulkarni SS, Payne RJ. Discovery of selective cyclic D-sulfopeptide ligands of the chemokine CCL22 via mirror-image mRNA display with genetic reprogramming. J Am Chem Soc 2024; 146: 34253-34259.
| Crossref | Google Scholar | PubMed |
109 Hayashi G, Naito T, Miura S, Iwamoto N, Usui Y, Bando-Shimizu M, Suzuki S, Higashi K, Nonaka M, Oishi S, Murakami H. Generating a mirror-image monobody targeting MCP-1 via TRAP display and chemical protein synthesis. Nat Commun 2024; 15: 10723.
| Crossref | Google Scholar | PubMed |
110 Schmidt N, Kumar A, Korf L, Dinh-Fricke AV, Abendroth F, Koide A, Linne U, Rakwalska-Bange M, Koide S, Essen L-O, Vázquez O, Hantschel O. Development of mirror-image monobodies targeting the oncogenic BCR::ABL1 kinase. Nat Commun 2024; 15: 10724.
| Crossref | Google Scholar |
111 Schumacher TN, Mayr LM, Minor DL, Jr, Milhollen MA, Burgess MW, Kim PS. Identification of D-peptide ligands through mirror-image phage display. Science 1996; 271: 1854-1857.
| Crossref | Google Scholar | PubMed |
112 Lander AJ, Jin Y, Luk LYP. D‐peptide and D‐protein technology: recent advances, challenges, and opportunities. ChemBioChem 2023; 24: e202200537.
| Crossref | Google Scholar | PubMed |
113 Harrison K, Mackay AS, Kambanis L, Maxwell JWC, Payne RJ. Synthesis and applications of mirror-image proteins. Nat Rev Chem 2023; 7: 383-404.
| Crossref | Google Scholar | PubMed |
114 Callahan AJ, Gandhesiri S, Travaline TL, Reja RM, Lozano Salazar L, Hanna S, et al. Mirror-image ligand discovery enabled by single-shot fast-flow synthesis of D-proteins. Nat Commun 2024; 15: 1813.
| Crossref | Google Scholar | PubMed |
115 Dutta S, Batori V, Koide A, Koide S. High‐affinity fragment complementation of a fibronectin type III domain and its application to stability enhancement. Prot Sci 2009; 14: 2838-2848.
| Crossref | Google Scholar | PubMed |
116 Robson B. Doppelgänger proteins as drug leads. Nat Biotechnol 1996; 14: 892-893.
| Crossref | Google Scholar | PubMed |
117 Mihara E, Watanabe S, Bashiruddin NK, Nakamura N, Matoba K, Sano Y, Maini R, Yin Y, Sakai K, Arimori T, Matsumoto K, Suga H, Takagi J. Lasso-grafting of macrocyclic peptide pharmacophores yields multi-functional proteins. Nat Commun 2021; 12: 1543.
| Crossref | Google Scholar | PubMed |
118 Ito K, Sakai K, Suzuki Y, Ozawa N, Hatta T, Natsume T, Matsumoto K, Suga H. Artificial human MET agonists based on macrocycle scaffolds. Nat Commun 2015; 6: 6373.
| Crossref | Google Scholar | PubMed |
119 Kan M-W, Craik DJ. Discovery of cyclotides from Australasian plants. Aust J Chem 2020; 73: 287.
| Crossref | Google Scholar |
120 Ullrich S, Philippe GJB, Li CY, Suga H. Rational design and selection of next-generation cyclotide drugs using the knotted cyclic peptide scaffold MCoTI-II. Aust J Chem 2025; 78: CH25086.
| Crossref | Google Scholar |
121 Gandini L, de Veer SJ, Chan CHH, Passmore MR, Liu K, Lundon B, et al. Anticoagulation during extracorporeal membrane oxygenation (ECMO): a selective inhibitor of activated factor XII compared to heparin in an ex vivo model. ACS Pharmacol Transl Sci 2025; 8: 1260-1269.
| Crossref | Google Scholar | PubMed |
122 Johns DG, Campeau L-C, Banka P, Bautmans A, Bueters T, Bianchi E, et al. Orally bioavailable macrocyclic peptide that inhibits binding of PCSK9 to the low density lipoprotein receptor. Circulation 2023; 148: 144-158.
| Crossref | Google Scholar | PubMed |
123 Alleyne C, Amin RP, Bhatt B, Bianchi E, Blain JC, Boyer N, et al. Series of novel and highly potent cyclic peptide PCSK9 inhibitors derived from an mRNA display screen and optimized via structure-based design. J Med Chem 2020; 63: 13796-13824.
| Crossref | Google Scholar | PubMed |
124 Tucker TJ, Embrey MW, Alleyne C, Amin RP, Bass A, Bhatt B, et al. A series of novel, highly potent, and orally bioavailable next-generation tricyclic peptide PCSK9 inhibitors. J Med Chem 2021; 64: 16770-16800.
| Crossref | Google Scholar | PubMed |
125 Li H, Thaisrivongs DA, Shang G, Chen Y, Chen Q, Tan L, et al. Total synthesis of enlicitide decanoate. J Am Chem Soc 2025; 147: 11036-11048.
| Crossref | Google Scholar | PubMed |
126 Beaulieu M-E, Jauset T, Massó-Vallés D, Martínez-Martín S, Rahl P, Maltais L, et al. Intrinsic cell-penetrating activity propels Omomyc from proof of concept to viable anti-MYC therapy. Sci Transl Med 2019; 11: eaar5012.
| Crossref | Google Scholar | PubMed |
127 Voss S, Rademann J, Nitsche C. Peptide-bismuth bicycles: in situ access to stable constrained peptides with superior bioactivity. Angew Chem Int Ed 2022; 61: e202113857.
| Crossref | Google Scholar | PubMed |
128 Voss S, Adair LD, Achazi K, Kim H, Bergemann S, Bartenschlager R, New EJ, Rademann J, Nitsche C. Cell-penetrating peptide-bismuth bicycles. Angew Chem Int Ed 2024; 63: e202318615.
| Crossref | Google Scholar | PubMed |
129 Ullrich S, Somathilake U, Shang M, Nitsche C. Phage-encoded bismuth bicycles enable instant access to targeted bioactive peptides. Commun Chem 2024; 7: 143.
| Crossref | Google Scholar | PubMed |
130 Ullrich S, Ghosh P, Shang MH, Siryer S, Kumaresan S, Panda B, Davies LJ, Somathilake U, Patel AP, Nitsche C. Synthesis and stability studies of constrained peptide–antimony bicycles. Aust J Chem 2024; 77: CH24094.
| Crossref | Google Scholar |
131 Ghosh P, Davies LJ, Nitsche C. Engineered nanobodies bind bismuth, indium and gallium for applications in theranostics. Angew Chem Int Ed 2024; 64: e202419455.
| Crossref | Google Scholar | PubMed |
132 Davies LJ, Ghosh P, Siryer S, Ullrich S, Nitsche C. Peptide–bismuth tricycles: maximizing stability by constraint. Chem Eur J 2025; 31: e202500064.
| Crossref | Google Scholar | PubMed |
133 Fridy PC, Li Y, Keegan S, Thompson MK, Nudelman I, Scheid JF, et al. A robust pipeline for rapid production of versatile nanobody repertoires. Nat Methods 2014; 11: 1253-1260.
| Crossref | Google Scholar | PubMed |
134 Wang Z, Li L, Hu R, Zhong P, Zhang Y, Cheng S, et al. Structural insights into the binding of nanobodies LaM2 and LaM4 to the red fluorescent protein mCherry. Prot Sci 2021; 30: 2298.
| Crossref | Google Scholar |
135 Lin K, Zhang C, Bai R, Duan H. Cyclic peptide therapeutic agents discovery: computational and artificial intelligence-driven strategies. J Med Chem 2025; 68: 10577-10598.
| Crossref | Google Scholar | PubMed |
136 Watson JL, Juergens D, Bennett NR, Trippe BL, Yim J, Eisenach HE, et al. De novo design of protein structure and function with RFdiffusion. Nature 2023; 620: 1089-1100.
| Crossref | Google Scholar | PubMed |
137 Asada N, Krebs CF, Panzer U. Miniproteins may have a big impact: new therapeutics for autoimmune diseases and beyond. Signal Transduct Target Ther 2024; 9: 298.
| Crossref | Google Scholar | PubMed |
138 Gründemann C, Stenberg KG, Gruber CW. T20K: an immunomodulatory cyclotide on its way to the clinic. Int J Pept Res Ther 2018; 25(1): 9-13.
| Crossref | Google Scholar |
139 Wang CK, Craik DJ. Cyclic peptide oral bioavailability: lessons from the past. Biopolymers 2016; 106: 901-909.
| Crossref | Google Scholar | PubMed |
140 Chen K, Pei D. Engineering cell-permeable proteins through insertion of cell-penetrating motifs into surface loops. ACS Chem Biol 2020; 15: 2568-2576.
| Crossref | Google Scholar | PubMed |
141 Buckton LK, Rahimi MN, McAlpine SR. Cyclic peptides as drugs for intracellular targets: the next frontier in peptide therapeutic development. Chem Eur J 2020; 27: 1487-1513.
| Crossref | Google Scholar | PubMed |
142 Schneider AFL, Kithil M, Cardoso MC, Lehmann M, Hackenberger CPR. Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives. Nat Chem 2021; 13: 530-539.
| Crossref | Google Scholar | PubMed |
143 Zizzari AT, Pliatsika D, Gall FM, Fischer T, Riedl R. New perspectives in oral peptide delivery. Drug Discov Today 2021; 26: 1097-1105.
| Crossref | Google Scholar | PubMed |
144 Buyanova M, Pei D. Targeting intracellular protein–protein interactions with macrocyclic peptides. Trends Pharmacol Sci 2022; 43: 234-248.
| Crossref | Google Scholar | PubMed |
145 Nicze M, Borówka M, Dec A, Niemiec A, Bułdak Ł, Okopień B. The current and promising oral delivery methods for protein- and peptide-based drugs. Int J Mol Sci 2024; 25: 815.
| Crossref | Google Scholar | PubMed |
146 Chan A, Tsourkas A. Intracellular protein delivery: approaches, challenges, and clinical applications. BME Front 2024; 5: 35.
| Crossref | Google Scholar | PubMed |
147 Franke J, Arafiles JVV, Leis C, Hackenberger CPR. Intracellular delivery of native proteins by bioreversible arginine modification (BioRAM) on amino groups. Angew Chem Int Ed 2025; 64: e202506802.
| Crossref | Google Scholar | PubMed |
148 Xiao W, Jiang W, Chen Z, Huang Y, Mao J, Zheng W, et al. Advance in peptide-based drug development: delivery platforms, therapeutics and vaccines. Signal Transduct Target Ther 2025; 10: 74.
| Crossref | Google Scholar | PubMed |
149 Gare CL, White AM, Malins LR. From lead to market: chemical approaches to transform peptides into therapeutics. Trends Biochem Sci 2025; 50(6): 467-480.
| Crossref | Google Scholar | PubMed |
150 Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide‐based drugs. Chem Biol Drug Des 2012; 81: 136.
| Crossref | Google Scholar |
151 Harel O, Jbara M. Chemical synthesis of bioactive proteins. Angew Chem Int Ed 2023; 62: e202217716.
| Crossref | Google Scholar | PubMed |
152 Wu Y. Trends in nanobody technology in industrialization. Discov Nano 2025; 20: 23.
| Crossref | Google Scholar | PubMed |
153 Khakerwala Z, Gaikwad S, Kumari S, Gupta GD, Makde RD. Recombinant production of de novo designed miniprotein using various fusion protein tags. Int J Biol Macromol 2025; 319: 145041.
| Crossref | Google Scholar | PubMed |
154 Caille S, Cui S, Faul MM, Mennen SM, Tedrow JS, Walker SD. Molecular complexity as a driver for chemical process innovation in the pharmaceutical industry. J Org Chem 2019; 84(8): 4583-4603.
| Crossref | Google Scholar | PubMed |