Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of heteroleptic yttrium and dysprosium 1,2,4-tris(trimethylsilyl)cyclopentadienyl complexes

Sophie C. Corner A , Conrad A. P. Goodwin A , Fabrizio Ortu https://orcid.org/0000-0002-1743-8338 A B , Peter Evans A , Hongrui Zhang A , Gemma K. Gransbury A , George F. S. Whitehead A and David P. Mills https://orcid.org/0000-0003-1575-7754 A *
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.

B Present address: School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK.

* Correspondence to: david.mills@manchester.ac.uk

Handling Editor: George Koutsantonis

Australian Journal of Chemistry 75(9) 684-697 https://doi.org/10.1071/CH21314
Submitted: 1 December 2021  Accepted: 7 February 2022   Published: 4 April 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

We report the synthesis of heteroleptic dysprosium complexes of the 1,2,4-tris(trimethylsilyl)cyclopentadienyl ligand (Cp‴={C5H2(SiMe3)3-1,2,4}), and diamagnetic yttrium analogues, by salt metathesis protocols from KCp‴ and molecular lanthanoid halide or borohydride precursors: [{Ln(Cp‴)2(μ-Cl)2K}2] (1-Ln; Ln = Y, Dy), [Ln(Cp‴)2(THF)(Cl)] (2-Ln; Ln = Y, Dy), [Y(Cp‴)23-C3H5)] (3-Y), [Y(Cp‴)(BH4)2(THF)] (4-Y), [Dy(Cp‴)(BH4)(μ-BH4)]4 (5-Dy) and [Ln(Cp‴)2(BH4)] (6-Ln; Ln = Y, Dy); several crystals of [Dy(Cp‴)2(BH4)(THF)] (7-Dy) formed on one occasion during the isolation of 6-Dy. Efforts to prepare the isolated lanthanoid metallocenium cations [Ln(Cp‴)2]+ for Y and Dy were not successful by the anion abstraction methods investigated herein; however, several crystals of the contact ion-pair complex [Y(Cp‴)2{(μ-Ph)2BPh2}] (8-Y) formed from the reaction of 3-Y with [NEt3H][BPh4]. On one occasion during the preparation of 3-Y we isolated several crystals of [Mg(Cp‴)(THF)(μ-Cl)]2. Complexes 1–6 and [NEt3H][BPh4] were all structurally authenticated by single crystal XRD and characterised by IR spectroscopy and elemental analysis, with magnetic susceptibility for dysprosium complexes determined by the Evans method, and yttrium analogues studied by multinuclear NMR spectroscopy; complexes 7-Dy, 8-Y, and [Mg(Cp‴)(THF)(μ-Cl)]2 were characterised by single crystal XRD only. The magnetic properties of 5-Dy were probed by SQUID magnetometry and ab initio calculations.

Keywords: borohydride, cyclopentadienyl, dysprosium, lanthanoid, single‐molecule magnet, yttrium.


References

[1]  G Wilkinson, JM Birmingham, J Am Chem Soc 1954, 76, 6210.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  H Schumann, JA Meese-Marktscheffel, L Esser, Chem Rev 1995, 95, 865.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  S Arndt, J Okuda, Chem Rev 2002, 102, 1953.
         | Crossref | GoogleScholarGoogle Scholar | 12059259PubMed |

[4]  Kresinski RA, Lanthanides: Cyclopentadienyl Compounds. In: Scott RA, editor. Lanthanides: Cyclopentadienyl Compounds, Encyclopedia of Inorganic and Bioinorganic Chemistry. Chichester, England: John Wiley; 2012.
| Crossref |

[5]  Atwood DA, Ed. The Rare Earth Elements: Fundamentals and Applications. Hoboken, NJ: John Wiley & Sons Ltd; 2012.

[6]  WJ Evans, Organometallics 2016, 35, 3088.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  Woen DH, Evans WJ. Chapter 293 - Expanding the +2 Oxidation State to the Rare-Earth Metals, Uranium, and Thorium in Molecular Complexes. In: Bünzli J-CG, Pecharsky VK, editors. Handbook on the Physics and Chemistry of the Rare Earths Including Actinides. Amsterdam: Elsevier B. V.; 2016. Vol. 50, p. 337.

[8]  CAP Goodwin, F Ortu, D Reta, NF Chilton, DP Mills, Nature 2017, 548, 439.
         | Crossref | GoogleScholarGoogle Scholar | 28836589PubMed |

[9]  FS Guo, BM Day, YC Chen, ML Tong, A Mansikkamäki, RA Layfield, Angew Chem Int Ed 2017, 56, 11445.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  FS Guo, BM Day, YC Chen, ML Tong, A Mansikkamäki, RA Layfield, Angew Chem Int Ed 2020, 59, 18844.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  K Randall McClain, CA Gould, K Chakarawet, SJ Teat, TJ Groshens, JR Long, BG Harvey, Chem Sci 2018, 9, 8492.
         | Crossref | GoogleScholarGoogle Scholar | 30568773PubMed |

[12]  FS Guo, BM Day, YC Chen, ML Tong, A Mansikkamäki, RA Layfield, Science 2018, 362, 1400.
         | Crossref | GoogleScholarGoogle Scholar | 30337456PubMed |

[13]  CA Gould, KR McClain, JM Yu, TJ Groshens, F Furche, BG Harvey, JR Long, J Am Chem Soc 2019, 141, 12967.
         | Crossref | GoogleScholarGoogle Scholar | 31375028PubMed |

[14]  P Evans, D Reta, GFS Whitehead, NF Chilton, DP Mills, J Am Chem Soc 2019, 141, 19935.
         | Crossref | GoogleScholarGoogle Scholar | 31751131PubMed |

[15]  CA Gould, KR McClain, D Reta, JGC Kragskow, DA Marchiori, E Lachman, E-S Choi, JG Analytis, RD Britt, NF Chilton, BG Harvey, JR Long, Science 2022, 375, 198.
         | Crossref | GoogleScholarGoogle Scholar | 35025637PubMed |

[16]  CAP Goodwin, Dalton Trans 2020, 49, 14320.
         | Crossref | GoogleScholarGoogle Scholar | 33030172PubMed |

[17]  Ding Y-S, Winpenny REP, Zheng Y-Z. 9.18 – 3d- and 4f-Based Single Molecule Magnets. In: Constable E, Que G, Que Jr L, editors. Comprehensive Coordination Chemistry III. Amsterdam: Elsevier B. V.; 2021. p. 595.

[18]  Giansiracusa MJ, Gransbury GK, Chilton NF, Mills DP. Single-Molecule Magnets. In: Scott RA, editor. Encyclopedia of Inorganic and Bioinorganic Chemistry. Chichester, England: John Wiley; 2021.
| Crossref |

[19]  WJ Evans, G Kociok‐Kohn, SE Foster, JW Ziller, RJ Doedens, J Organomet Chem 1993, 444, 61.

[20]  GR Giesbrecht, DL Clark, JC Gordon, BL Scott, Appl Organomet Chem 2003, 17, 473.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  GR Giesbrecht, GE Collis, JC Gordon, DL Clark, BL Scott, NJ Hardman, J Organomet Chem 2004, 689, 2177.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  MH Kuiper, H Lueken, Z Anorg Allg Chem 2007, 633, 1407.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  F Jaroschik, F Nief, X-F Le Goff, L Ricard, Organometallics 2007, 26, 3552.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  F Jaroschik, F Nief, XF Le Goff, Polyhedron 2009, 28, 2744.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  F Ortu, JM Fowler, M Burton, A Formanuik, DP Mills, New J Chem 2015, 39, 7633.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  MP Plesniak, X Just-Baringo, F Ortu, DP Mills, DJ Procter, Chem Commun 2016, 52, 13503.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  F Ortu, J Liu, M Burton, JM Fowler, A Formanuik, M-E Boulon, NF Chilton, DP Mills, Inorg Chem 2017, 56, 2496.
         | Crossref | GoogleScholarGoogle Scholar | 28207243PubMed |

[28]  F Ortu, D Packer, J Liu, M Burton, A Formanuik, DP Mills, J Organomet Chem 2018, 857, 45.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  Mills DP, Liddle ST. Ligand Design in Modern Lanthanide Chemistry. In: Lundgren R, Stradiotto M, editors. Ligand Design in Metal Chemistry: Reactivity and Catalysis. Chichester, England: John Wiley; 2016.

[30]  WJ Evans, SL Gonzales, JW Ziller, J Am Chem Soc 1991, 113, 7423.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  WJ Evans, CA Siebel, JW Ziller, J Am Chem Soc 1998, 120, 6475.

[32]  WJ Evans, SA Kozimor, JC Brady, BL Davis, GW Nyce, CA Seibel, JW Ziller, RJ Doedens, Organometallics 2005, 24, 2269.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  WJ Evans, JM Perotti, SA Kozimor, TM Champagne, BL Davis, GW Nyce, CH Fujimoto, RD Clark, MA Johnston, JW Ziller, Organometallics 2005, 24, 3916.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  WJ Evans, BL Davis, TM Champagne, JW Ziller, Proc Natl Acad Sci USA 2006, 103, 12678.
         | Crossref | GoogleScholarGoogle Scholar | 16908852PubMed |

[35]  S Demir, JM Zadrozny, M Nippe, JR Long, J Am Chem Soc 2012, 134, 18546.
         | Crossref | GoogleScholarGoogle Scholar | 23110653PubMed |

[36]  S Demir, JM Zadrozny, JR Long, Chem Eur J 2014, 20, 9524.
         | Crossref | GoogleScholarGoogle Scholar | 24975126PubMed |

[37]  S Demir, KR Meihaus, JR Long, J Organomet Chem 2018, 857, 164.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  CAP Goodwin, D Reta, F Ortu, J Liu, NF Chilton, DP Mills, Chem Commun 2018, 54, 9182.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  FP Gabbaï, PJ Chirik, DE Fogg, K Meyer, DJ Mindiola, LL Schafer, S-L You, Organometallics 2016, 35, 3255.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  TJ Marks, JR Kolb, Chem Rev 1977, 77, 263.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  M Visseaux, F Bonnet, Coord Chem Rev 2011, 255, 374.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  RD Shannon, Acta Cryst 1976, A32, 751.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  Y-S Meng, Y-Q Zhang, Z-M Wang, B-W Wang, S Gao, Chem Eur J 2016, 22, 12724.
         | Crossref | GoogleScholarGoogle Scholar | 27417884PubMed |

[44]  J Zhang, R Cai, Z Chen, X Zhou, Inorg Chem 2007, 46, 321.
         | Crossref | GoogleScholarGoogle Scholar | 17198442PubMed |

[45]  F Bonnet, M Visseaux, D Barbier-Baudry, A Hafid, E Vigier, MM Kubicki, Inorg Chem 2004, 43, 3682.
         | Crossref | GoogleScholarGoogle Scholar | 15180423PubMed |

[46]  F Bonnet, CE Jones, S Semlali, M Bria, P Roussel, M Visseaux, PL Arnold, Dalton Trans 2013, 42, 790.
         | Crossref | GoogleScholarGoogle Scholar | 23202137PubMed |

[47]  F Jaroschik, F Nief, X-F Le Goff, L Ricard, Organometallics 2007, 26, 1123.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  S Demir, NA Siladke, JW Ziller, WJ Evans, Dalton Trans 2012, 41, 9659.
         | Crossref | GoogleScholarGoogle Scholar | 22772309PubMed |

[49]  SK Sur, J Magn Reson 1989, 82, 169.

[50]  van Vleck JH. Theory of Electric and Magnetic Susceptibilities. Oxford: Oxford University Press; 1932.

[51]  CAP Goodwin, D Reta, F Ortu, NF Chilton, DP Mills, J Am Chem Soc 2017, 139, 18714.
         | Crossref | GoogleScholarGoogle Scholar | 29182861PubMed |

[52]  J-L Liu, Y-C Chen, M-L Tong, Chem Soc Rev 2018, 47, 2431.
         | Crossref | GoogleScholarGoogle Scholar | 29492482PubMed |

[53]  Han T, Ding TY-S, Zheng Y-Z. Lanthanide Clusters Toward Single-Molecule Magnets. In: Zheng Z, editor. Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials. Structure and Bonding. Berlin, Heidelberg: Springer; 2016. 371, p. 209.

[54]  Gatteschi D, Sessoli R, Villain J. Molecular Nanomagnets. Oxford: Oxford University Press; 2006.

[55]  O Ben Dor, S Yochelis, I Felner, Y Paltiel, J Magn Magn Mater 2017, 428, 357.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  AV Racu, DH Ursu, OV Kuliukova, C Logofatu, A Leca, M Miclau, Mater Lett 2015, 140, 107.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  CV Topping, SJ Blundell, J Phys: Condens Matter 2019, 31, 013001.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  JD Rinehart, JR Long, Chem Sci 2011, 2, 2078.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  VS Parmar, GK Gransbury, GFS Whitehead, DP Mills, REP Winpenny, Chem Commun 2021, 57, 9208.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  M Vonci, K Mason, EA Suturina, AT Frawley, SG Worswick, I Kuprov, D Parker, EJL McInnes, NF Chilton, J Am Chem Soc 2017, 139, 14166.
         | Crossref | GoogleScholarGoogle Scholar | 28884581PubMed |

[61]  M Vonci, K Mason, ER Neil, DS Yufit, EJL McInnes, D Parker, NF Chilton, Inorg Chem 2019, 58, 5733.
         | Crossref | GoogleScholarGoogle Scholar | 30997805PubMed |

[62]  KC Frisch, J Am Chem Soc 1953, 75, 6050.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  P Jutzi, R Sauer, J Organomet Chem 1973, 50, C29.
         | Crossref | GoogleScholarGoogle Scholar |

[64]  MS Miftakhov, GA Tolstikov, SI Lomakina, Zh Obshch Khim 1976, 46, 2754.

[65]  CH Winter, X-X Zhou, DA Dobbs, MJ Heeg, Organometallics 1991, 10, 210.
         | Crossref | GoogleScholarGoogle Scholar |

[66]  A Formanuik, F Ortu, CJ Inman, A Kerridge, L Castro, L Maron, DP Mills, Chem Eur J 2016, 22, 17976.
         | Crossref | GoogleScholarGoogle Scholar | 27714966PubMed |

[67]  MJ Harvey, TP Hanusa, M Pink, J Chem Soc, Dalton Trans 2001, 1128.
         | Crossref | GoogleScholarGoogle Scholar |

[68]  JK Peterson, MR MacDonald, JW Ziller, WJ Evans, Organometallics 2013, 32, 2625.
         | Crossref | GoogleScholarGoogle Scholar |

[69]  A Hervé, Y Bouzidi, J-C Berthet, L Belkhiri, P Thuéry, A Boucekkine, M Ephritikhine, Inorg Chem 2015, 54, 2474.
         | Crossref | GoogleScholarGoogle Scholar | 25686295PubMed |

[70]  MJ Enright, K Gilbert-Bass, H Sarsito, BM Cossairt, Chem Mater 2019, 31, 2677.
         | Crossref | GoogleScholarGoogle Scholar |

[71]  SJ Pike, E Lavagnini, LM Varley, JL Cook, CA Hunter, Chem Sci 2019, 10, 5943.
         | Crossref | GoogleScholarGoogle Scholar | 31360400PubMed |