CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Crop & Pasture Science   
Crop & Pasture Science
Journal Banner
  Plant Sciences, Sustainable Farming Systems & Food Quality
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Farrer Reviews
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

red arrow Farrer Reviews
blank image

Invited Farrer Review Series. More...

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 55(8)

Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery

Jiayin Pang A, Meixue Zhou A, Neville Mendham A, Sergey Shabala A B

A School of Agricultural Science and Tasmanian Institute of Agricultural Research, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia.
B Corresponding author; email: Sergey.Shabala@utas.edu.au
PDF (460 KB) $25
 Export Citation


In this study, the growth response of 6 barley genotypes of different origin (3 from China, 2 from Australia, 1 from Japan) to waterlogging and subsequent recovery was evaluated in 2 different soil types, an artificial potting mix and a Vertosol. A range of physiological measurements was assessed, to develop a method to aid selection for waterlogging tolerance. Plants at the 3 or 4 expanded leaf stages were subjected to waterlogging for 3 weeks followed by 2 weeks of recovery. Both shoot and root growth was negatively affected by waterlogging. As waterlogging stress developed, chlorophyll content, CO2 assimilation rate, and maximal quantum efficiency of photosystem II (Fv/Fm) decreased significantly. The adverse effect of waterlogging was most severe for genotype Naso Nijo, intermediate for ZP, Gairdner, DYSYH, and Franklin, and least for TX9425 in both trials. Studies of the root anatomy suggested that such a contrasting behaviour may be partially due to a significant difference in the pattern of aerenchyma formation in barley roots. The adverse effects in stressed plants were alleviated after 2 weeks of drainage for all genotypes. In general, TX9425 continued to grow better than other varieties, whereas recovery of Naso Nijo was extremely slow. It is suggested that screening a small number of lines for waterlogging tolerance could be facilitated by selecting genotypes with least pronounced reduction of photosynthetic rate or total chlorophyll content, and for a larger number of lines, chlorophyll fluorescence is the most appropriate tool.

Keywords: chlorophyll content, photosynthesis, chlorophyll fluorescence, aerenchyma.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015