CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Crop & Pasture Science   
Crop & Pasture Science
Journal Banner
  Plant Sciences, Sustainable Farming Systems & Food Quality
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Farrer Reviews
Sample Issue
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

red arrow Farrer Reviews
blank image

Invited Farrer Review Series. More...


red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 60(10)

Phosphorus accumulation by field-grown canola crops and the potential for deep phosphorus placement in a Mediterranean-type climate

Terry J. Rose A C D, Zed Rengel A, Qifu Ma A, John W. Bowden B

A Soil Science and Plant Nutrition, M087, School of Earth and Geographical Sciences, University of Western Australia, Crawley, WA 6009, Australia.
B Department of Agriculture and Food Western Australia, 3 Baron Hay Court, South Perth, WA 6151, Australia.
C Present address: Japan International Research Centre for Agricultural Science (JIRCAS), 1-1 Ohwashi Tsukuba, 305-8686 Ibaraki, Japan.
D Corresponding author. Email: roset@affrc.go.jp
 
PDF (352 KB) $25
 Export Citation
 Print
  


Abstract

When the bulk of phosphorus (P) is located near the soil surface, spring drying of topsoil in Mediterranean-type climates can reduce P availability to crops and cause potential yield loss. In crop species that require a P supply during spring, deep-placement of P fertiliser has proved an effective method of improving P availability and grain yields; however, the spring P demand of field-grown canola (Brassica napus L.) and therefore potential response to deep P placement is not known. This study investigated the effect of deep- (0.17–0.18 m), conventional- (shallow, 0.07–0.08 m), split- (50% deep, 50% shallow), and nil-P fertiliser treatments on P accumulation and seed yields of canola in two field trials. In addition, a glasshouse experiment with different depths of P fertiliser placement and topsoil drying at different growth stages was conducted. In the glasshouse study, deep P placement resulted in greater P uptake by plants, but did not increase seed yields regardless of the time of topsoil drying. At the relatively high-soil-P field site (canola grown on residual P application from the previous year) in a dry season, there was no biomass response to any residual P fertiliser treatments, and P accumulation had ceased by mid flowering. At the low-P field site, P accumulation continued throughout flowering and silique-filling, and seed yields increased significantly (P ≤ 0.05) in the order of split- > deep- > shallow- > nil-P treatments. Improved seed yields in the split- and deep-P treatments appeared to be the direct result of enhanced P availability; in particular, P uptake during vegetative growth (winter) was higher in the treatments with deep P placement. A greater understanding of P accumulation by field-grown canola in relation to soil P properties is needed for better defining optimum P fertiliser placement recommendations.

   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015