CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 59(1)

DNA barcoding Australasian chondrichthyans: results and potential uses in conservation

Robert D. Ward A B, Bronwyn H. Holmes A, William T. White A, Peter R. Last A

A Wealth from Oceans Flagship, CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, Tasmania 7001, Australia.
B Corresponding author. Email: Bob.Ward@csiro.au
 
PDF (252 KB) $25
 Supplementary Material
 Export Citation
 Print
  


Abstract

DNA barcoding – sequencing a region of the mitochondrial cytochrome c oxidase 1 gene (cox1) – promises a rapid and accurate means of species identification, and of any life history stage. For sharks and rays, it may offer a ready means of identifying legal or illegal shark catches, including shark fins taken for the profitable shark fin market. Here it is shown that an analysis of sequence variability in a 655 bp region of cox1 from 945 specimens of 210 chondrichthyan species from 36 families permits the discrimination of 99.0% of these species. Only the two stingarees Urolophus sufflavus and U. cruciatus could not be separated, although these could be readily distinguished from eight other congeners. The average Kimura 2 parameter distance separating individuals within species was 0.37%, and the average distance separating species within genera was 7.48%. Two specimens that clustered with congeners rather than with their identified species-cluster were noted: these could represent instances of hybridisation (although this has not be documented for chondrichthyans), misidentification or mislabelling. It is concluded that cox1 barcoding can be used to identify shark and ray species with a very high degree of accuracy. The sequence variability characteristics of individuals of five species (Aetomylaeus nichofii, Dasyatis kuhlii, Dasyatis leylandi, Himantura gerrardi and Orectolobus maculatus) were consistent with cryptic speciation, and it is suggested that these five taxa be subjected to detailed taxonomic examination to confirm or refute this suggestion. The present barcoding study holds out great hope for the ready identification of sharks, shark products and shark fins, and also highlights some taxonomic issues that need to be investigated further.

Keywords: chimaerid, COI, cox1, cytochrome c oxidase, identification, mitochondrial DNA, ray, shark.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014