Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH FRONT

How does marker choice affect your diet analysis: comparing genetic markers and digestion levels for diet metabarcoding of tropical-reef piscivores

Floriaan Devloo-Delva A B C I , Roger Huerlimann A D , Gladys Chua A , Jordan K. Matley E , Michelle R. Heupel F , Colin A. Simpfendorfer A and Gregory E. Maes A D G H
+ Author Affiliations
- Author Affiliations

A Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, 145 James Cook Drive, Townsville, Qld 4811, Australia.

B Oceans and Atmosphere, CSIRO, GPO Box 1538, Hobart, Tas 7000, Australia.

C School of Biological Sciences–Quantitative Marine Science, University of Tasmania, Private Bag 55, Hobart, Tas 7001, Australia.

D Comparative Genomics Centre, College of Science and Engineering, James Cook University, 145 James Cook Drive, Townsville, Qld 4811, Australia.

E Center for Marine and Environmental Studies, University of the Virgin Islands, 2 John Brewers Bay St Thomas, VI 00802, USA.

F Australian Institute of Marine Science, PMB 3, Townsville, Qld 4810, Australia.

G Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, BE-3000 Leuven, Belgium.

H Center for Human Genetics, UZ Leuven–Genomics Core, KU Leuven, Herestraat 49, BE-3000 Leuven, Belgium.

I Corresponding author. Email: floriaan.devloo.delva@hotmail.com

Marine and Freshwater Research 70(1) 8-18 https://doi.org/10.1071/MF17209
Submitted: 9 July 2017  Accepted: 15 January 2018   Published: 9 April 2018

Abstract

Tropical reefs are highly diverse ecosystems, and reliable biomonitoring, through diet metabarcoding, is needed to understand present and future trophic relationships in this changing habitat. Several studies have assessed the reliability and effectiveness of single molecular markers; however, a cross-marker validation has rarely been performed. This study identified crucial properties for 12S rDNA, 16S rDNA and COI metabarcoding in tropical-reef piscivores (Plectropomus spp.). In addition, three new versatile primer sets for 16S were designed in silico for metabarcoding of reef fish. Results showed that COI was overall better at recovering true diversity because of a well-supported database. Second, optimal 16S amplicon sizes ranged between 160 and 440 base pairs for full diversity recovery, with increased species detection for the 270-base pairs region. Finally, blocking of predator-specific COI sequences was not equally effective in all host species, potentially introducing bias when diet compositions are directly compared. In conclusion, this novel study showed that marker success for prey identification is highly dependent on the reference database, taxonomic scope, DNA quality, amplicon length and sequencing platform. Results suggest that COI, complemented with 16S, yields the best outcome for diet metabarcoding in reef piscivores. Findings in this paper are relevant to other piscivores and other metabarcoding applications.

Additional keywords: amplicon length, coral trout, gut contents, marine predators, metabarcoding performance, 16S metabarcoding primers.


References

Alonso, H., Granadeiro, J. P., Waap, S., Xavier, J., Symondson, W. O., Ramos, J. A., and Catry, P. (2014). A holistic ecological analysis of the diet of Cory’s shearwaters using prey morphological characters and DNA barcoding. Molecular Ecology 23, 3719–3733.
A holistic ecological analysis of the diet of Cory’s shearwaters using prey morphological characters and DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Wms7jJ&md5=04b94adc0a4295a9d65ea09de17fffe4CAS |

Avignon, S., Tastard, E., Weston, S., Duhamel, G., and Denis, F. (2017). Morphological identification and DNA barcoding used for diet analysis of gilthead seabream (Sparus aurata) in its expanding northerly range. Aquatic Living Resources 30, 1.
Morphological identification and DNA barcoding used for diet analysis of gilthead seabream (Sparus aurata) in its expanding northerly range.Crossref | GoogleScholarGoogle Scholar |

Aylagas, E., Borja, A., Irigoien, X., and Rodriguez-Ezpeleta, N. (2016). Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment. Frontiers of Materials Science 3, 96.
Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment.Crossref | GoogleScholarGoogle Scholar |

Berry, O., Bulman, C., Bunce, M., Coghlan, M., Murray, D. C., and Ward, R. D. (2015). Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Marine Ecology Progress Series 540, 167–181.
Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XntFSqsr4%3D&md5=02fe4f32582f4a79fe50b6cf28ca5bb5CAS |

Brandon-Mong, G.-J., Gan, H.-M., Sing, K.-W., Lee, P.-S., Lim, P.-E., and Wilson, J.-J. (2015). DNA metabarcoding of insects and allies: an evaluation of primers and pipelines. Bulletin of Entomological Research 105, 717–727.
DNA metabarcoding of insects and allies: an evaluation of primers and pipelines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVSlsbrN&md5=f98883e27501c43760c00fbcc1159e2fCAS |

Carreon-Martinez, L., Johnson, T., Ludsin, S., and Heath, D. (2011). Utilization of stomach content DNA to determine diet diversity in piscivorous fishes. Journal of Fish Biology 78, 1170–1182.
Utilization of stomach content DNA to determine diet diversity in piscivorous fishes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MvgvVyrsw%3D%3D&md5=09a2a32cde4520a58dc7ebb05b0ecd08CAS |

Cawthorn, D.-M., Steinman, H. A., and Witthuhn, R. C. (2012). Evaluation of the 16S and 12S rRNA genes as universal markers for the identification of commercial fish species in South Africa. Gene 491, 40–48.
Evaluation of the 16S and 12S rRNA genes as universal markers for the identification of commercial fish species in South Africa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVWktr%2FO&md5=42df05f9d716a6c26adff65456b18445CAS |

Cruaud, P., Rasplus, J.-Y., Rodriguez, L. J., and Cruaud, A. (2017). High-throughput sequencing of multiple amplicons for barcoding and integrative taxonomy. Scientific Reports 7, 41948.
High-throughput sequencing of multiple amplicons for barcoding and integrative taxonomy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXit1Sqt7c%3D&md5=452d0d4422d68a88950c8b118877b3d7CAS |

De Barba, M., Miquel, C., Boyer, F., Mercier, C., Rioux, D., Coissac, E., and Taberlet, P. (2014). DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Molecular Ecology Resources 14, 306–323.
DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt1Sksbg%3D&md5=30c49d6dc58eee57031d56bb85dd090cCAS |

Deagle, B. E., Kirkwood, R., and Jarman, S. N. (2009). Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Molecular Ecology 18, 2022–2038.
Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVektLY%3D&md5=c1860949e7b7d0d9b6a675e408d6a78eCAS |

Deagle, B. E., Chiaradia, A., McInnes, J., and Jarman, S. N. (2010). Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out? Conservation Genetics 11, 2039–2048.
Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out?Crossref | GoogleScholarGoogle Scholar |

Deagle, B. E., Jarman, S. N., Coissac, E., Pompanon, F., and Taberlet, P. (2014). DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biology Letters 10, 20140562.
DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match.Crossref | GoogleScholarGoogle Scholar |

Dunn, M. R., Szabo, A., McVeagh, M. S., and Smith, P. J. (2010). The diet of deepwater sharks and the benefits of using DNA identification of prey. Deep-sea Research. Part I, Oceanographic Research Papers 57, 923–930.
The diet of deepwater sharks and the benefits of using DNA identification of prey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntF2gt7s%3D&md5=c59b582f078a7681b32dabbc1cfc596fCAS |

Dunshea, G. (2009). DNA-based diet analysis for any predator. PLoS One 4, e5252.
DNA-based diet analysis for any predator.Crossref | GoogleScholarGoogle Scholar |

Frisch, A. J., Ireland, M., Rizzari, J. R., Lönnstedt, O. M., Magnenat, K. A., Mirbach, C. E., and Hobbs, J.-P. A. (2016a). Reassessing the trophic role of reef sharks as apex predators on coral reefs. Coral Reefs 35, 459–472.
Reassessing the trophic role of reef sharks as apex predators on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Frisch, A. J., Ireland, M., Rizzari, J. R., Lonnstedt, O. M., Magnenat, K. A., Mirbach, C. E., and Hobbs, J. P. A. (2016b). Reassessing the trophic role of reef sharks as apex predators on coral reefs. Coral Reefs 35, 459–472.
Reassessing the trophic role of reef sharks as apex predators on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Galal-Khallaf, A., Osman, A. G., Carleos, C. E., Garcia-Vazquez, E., and Borrell, Y. J. (2016). A case study for assessing fish traceability in Egyptian aquafeed formulations using pyrosequencing and metabarcoding. Fisheries Research 174, 143–150.
A case study for assessing fish traceability in Egyptian aquafeed formulations using pyrosequencing and metabarcoding.Crossref | GoogleScholarGoogle Scholar |

Geller, J., Meyer, C., Parker, M., and Hawk, H. (2013). Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Molecular Ecology Resources 13, 851–861.
Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1OqtrnO&md5=ae1db68350f570899aa55001f9e7c69eCAS |

Heupel, M. R., Williams, A. J., Welch, D. J., Davies, C. R., Adams, S., Carlos, G., and Mapstone, B. D. (2010). Demography of a large exploited grouper, Plectropomus laevis: implications for fisheries management. Marine and Freshwater Research 61, 184–195.
Demography of a large exploited grouper, Plectropomus laevis: implications for fisheries management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVagsro%3D&md5=2273a8663698863f555610a2ea1038fdCAS |

Huber, J. A., Morrison, H. G., Huse, S. M., Neal, P. R., Sogin, M. L., and Mark Welch, D. B. (2009). Effect of PCR amplicon size on assessments of clone library microbial diversity and community structure. Environmental Microbiology 11, 1292–1302.
Effect of PCR amplicon size on assessments of clone library microbial diversity and community structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVequro%3D&md5=115929568036022db96e1f5dd1010657CAS |

Hughes, T. P., Kerry, J. T., Alvarez-Noriega, M., Alvarez-Romero, J. G., Anderson, K. D., Baird, A. H., Babcock, R. C., Beger, M., Bellwood, D. R., Berkelmans, R., Bridge, T. C., Butler, I. R., Byrne, M., Cantin, N. E., Comeau, S., Connolly, S. R., Cumming, G. S., Dalton, S. J., Diaz-Pulido, G., Eakin, C. M., Figueira, W. F., Gilmour, J. P., Harrison, H. B., Heron, S. F., Hoey, A. S., Hobbs, J. P. A., Hoogenboom, M. O., Kennedy, E. V., Kuo, C. Y., Lough, J. M., Lowe, R. J., Liu, G., Cculloch, M. T. M., Malcolm, H. A., Mcwilliam, M. J., Pandolfi, J. M., Pears, R. J., Pratchett, M. S., Schoepf, V., Simpson, T., Skirving, W. J., Sommer, B., Torda, G., Wachenfeld, D. R., Willis, B. L., and Wilson, S. K. (2017). Global warming and recurrent mass bleaching of corals. Nature 543, 373–377.
Global warming and recurrent mass bleaching of corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXlslens78%3D&md5=7384502c55865fa5fc0922a37881acb2CAS |

Ji, Y., Ashton, L., Pedley, S. M., Edwards, D. P., Tang, Y., Nakamura, A., Kitching, R., Dolman, P. M., Woodcock, P., and Edwards, F. A. (2013). Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecology Letters 16, 1245–1257.
Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding.Crossref | GoogleScholarGoogle Scholar |

Kress, W. J., García-Robledo, C., Uriarte, M., and Erickson, D. L. (2015). DNA barcodes for ecology, evolution, and conservation. Trends in Ecology & Evolution 30, 25–35.
DNA barcodes for ecology, evolution, and conservation.Crossref | GoogleScholarGoogle Scholar |

Legler, N. D., Johnson, T. B., Heath, D. D., and Ludsin, S. A. (2010). Water temperature and prey size effects on the rate of digestion of larval and early juvenile fish. Transactions of the American Fisheries Society 139, 868–875.
Water temperature and prey size effects on the rate of digestion of larval and early juvenile fish.Crossref | GoogleScholarGoogle Scholar |

Leray, M., Boehm, J., Mills, S. C., and Meyer, C. (2012). Moorea BIOCODE barcode library as a tool for understanding predator–prey interactions: insights into the diet of common predatory coral reef fishes. Coral Reefs 31, 383–388.
Moorea BIOCODE barcode library as a tool for understanding predator–prey interactions: insights into the diet of common predatory coral reef fishes.Crossref | GoogleScholarGoogle Scholar |

Leray, M., Yang, J. Y., Meyer, C. P., Mills, S. C., Agudelo, N., Ranwez, V., Boehm, J. T., and Machida, R. J. (2013). A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology 10, 34.
A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents.Crossref | GoogleScholarGoogle Scholar |

Leray, M., Meyer, C. P., and Mills, S. C. (2015). Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet. PeerJ 3, e1047.
Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet.Crossref | GoogleScholarGoogle Scholar |

Lv, J., Wu, S., Zhang, Y., Chen, Y., Feng, C., Yuan, X., Jia, G., Deng, J., Wang, C., and Wang, Q. (2014). Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the Ixodida (Acari: Ixodida). Parasites & Vectors 7, 93.
Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the Ixodida (Acari: Ixodida).Crossref | GoogleScholarGoogle Scholar |

Machida, R. J., and Tsuda, A. (2010). Dissimilarity of species and forms of planktonic Neocalanus copepods using mitochondrial COI, 12S, nuclear ITS, and 28S gene sequences. PLoS One 5, e10278.
Dissimilarity of species and forms of planktonic Neocalanus copepods using mitochondrial COI, 12S, nuclear ITS, and 28S gene sequences.Crossref | GoogleScholarGoogle Scholar |

Magoč, T., and Salzberg, S. L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963.
FLASH: fast length adjustment of short reads to improve genome assemblies.Crossref | GoogleScholarGoogle Scholar |

Matley, J., Tobin, A., Lédée, E., Heupel, M., and Simpfendorfer, C. (2016). Contrasting patterns of vertical and horizontal space use of two exploited and sympatric coral reef fish. Marine Biology 163, 253.
Contrasting patterns of vertical and horizontal space use of two exploited and sympatric coral reef fish.Crossref | GoogleScholarGoogle Scholar |

Matley, J. K., Heupel, M. R., Fisk, A. T., Simpfendorfer, C. A., and Tobin, A. J. (2017a). Measuring niche overlap between co-occurring Plectropomus spp. using acoustic telemetry and stable isotopes. Marine and Freshwater Research 68, 1468–1478.
Measuring niche overlap between co-occurring Plectropomus spp. using acoustic telemetry and stable isotopes.Crossref | GoogleScholarGoogle Scholar |

Matley, J. K., Tobin, A. J., Simpfendorfer, C. A., Fisk, A. T., and Heupel, M. R. (2017b). Trophic niche and spatio-temporal changes in the feeding ecology of two sympatric species of coral trout (Plectropomus leopardus and P. laevis). Marine Ecology Progress Series 563, 197–210.
Trophic niche and spatio-temporal changes in the feeding ecology of two sympatric species of coral trout (Plectropomus leopardus and P. laevis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC1cXisV2nsL4%3D&md5=79636a8bc620d3a0f2c56b78548116a6CAS |

Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J., Sato, K., Minamoto, T., Yamamoto, S., Yamanaka, H., and Araki, H. (2015). MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science 2, 150088.
MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC28rgsVartg%3D%3D&md5=29272f3af5a05bf886a36ff1ee4c2a93CAS |

Pompanon, F., Deagle, B. E., Symondson, W. O., Brown, D. S., Jarman, S. N., and Taberlet, P. (2012). Who is eating what: diet assessment using next generation sequencing. Molecular Ecology 21, 1931–1950.
Who is eating what: diet assessment using next generation sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGktr4%3D&md5=b43e3ad8e949fe7eff601655fac99227CAS |

Rohland, N., and Reich, D. (2012). Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Research 22, 939–946.
Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1antbk%3D&md5=d44db834cea19d7f9eb0e81e434b9e3cCAS |

St John, J., Russ, G. R., Brown, I. W., and Squire, L. C. (2001). The diet of the large coral reef serranid Plectropomus leopordus in two fishing zones on the Great Barrier Reef, Australia. Fishery Bulletin 99, 180–192.

Tamari, F., and Hinkley, C. S. (2016). Extraction of DNA from plant tissue: review and protocols. ‘Sample Preparation Techniques for Soil, Plant, and Animal Samples’. (Ed. M. Mićić.) pp. 245–263. (Humana Press: New York, NY, USA.)

Thompson, A., Costello, P., Davidson, J., Logan, M., Coleman, G., Gunn, K., and Schaffelke, B. (2016). Marine monitoring program. Annual report for inshore coral reef monitoring: 2014 to 2015. Report for the Great Barrier Reef Marine Park Authority. Australian Institute of Marine Science, Townsville, Qld, Australia.

Thomsen, P. F., Moller, P. R., Sigsgaard, E. E., Knudsen, S. W., Jorgensen, O. A., and Willerslev, E. (2016). Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. PLoS One 11, e0165252.
Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes.Crossref | GoogleScholarGoogle Scholar |

Vestheim, H., and Jarman, S. N. (2008). Blocking primers to enhance PCR amplification of rare sequences in mixed samples–a case study on prey DNA in Antarctic krill stomachs. Frontiers in Zoology 5, 12.
Blocking primers to enhance PCR amplification of rare sequences in mixed samples–a case study on prey DNA in Antarctic krill stomachs.Crossref | GoogleScholarGoogle Scholar |

Wickham, H. (2016). ‘ggplot2: Elegant Graphics for Data Analysis’, 2 edn. (Springer International Publishing: New York, NY, USA.)

Zaiko, A., Martinez, J. L., Schmidt-Petersen, J., Ribicic, D., Samuiloviene, A., and Garcia-Vazquez, E. (2015a). Metabarcoding approach for the ballast water surveillance: an advantageous solution or an awkward challenge? Marine Pollution Bulletin 92, 25–34.
Metabarcoding approach for the ballast water surveillance: an advantageous solution or an awkward challenge?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFWrtLg%3D&md5=d37c72b74eecd02ed6813b41be07b172CAS |

Zaiko, A., Martinez, J. L., Ardura, A., Clusa, L., Borrell, Y. J., Samuiloviene, A., Roca, A., and Garcia-Vazquez, E. (2015b). Detecting nuisance species using NGST: methodology shortcomings and possible application in ballast water monitoring. Marine Environmental Research 112, 64–72.
Detecting nuisance species using NGST: methodology shortcomings and possible application in ballast water monitoring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFKis7fL&md5=abf2ee3dca9881377bf9aa73829175ccCAS |