Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Convenient Ambient Temperature Generation of Sulfonyl Radicals

Kerry Gilmore A , Brian Gold A , Ronald J. Clark A and Igor V. Alabugin A B

A Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.

B Corresponding author. Email: alabugin@chem.fsu.edu

Australian Journal of Chemistry 66(3) 336-340 http://dx.doi.org/10.1071/CH12499
Submitted: 7 November 2012  Accepted: 12 December 2012   Published: 16 January 2013

Abstract

Presented herein is a novel method for the efficient, ambient temperature generation of sulfonyl radicals from aryl and alkyl sulfonylbromides upon autoxidation of triethylborane (Et3B). The resultant radicals were regioselectively trapped via addition to terminal alkynes, generating a secondary vinyl radical that selectively abstracts a Br atom from RSO2Br, yielding the (E)-bromo vinylsulfones. Sensitivity towards Lewis basic groups was observed, presumably due to the disruptive coordination to Et3B before atom-transfer.

Graphical Abstract Image


References

[1]     (a) For general discussion of synthetic utility of radical reactions, see: D. P. Curran, N. A. Porter, B. Giese, Stereochemistry of Radical Reactions 1996 (VCH: Weinheim).
      (b) A. Gansauer, H. Bluhm, Chem. Rev. 2000, 100, 2771.
         | CrossRef | open url image1
         (c) Radicals in Organic Synthesis (Eds P. Renaud, M. P. Sibi) 2001 (Wiley-VCH: Weinheim).
      (d) M. P. Sibi, S. Manyem, J. Zimmerman, Chem. Rev. 2003, 103, 3263.
         | CrossRef | open url image1

[2]  (a) Selected examples of radical cascades for the preparation of conjugated carbon-rich materials: P. Byers, I. V. Alabugin, J. Am. Chem. Soc. 2012, 134, 9609.
         | CrossRef | 1:CAS:528:DC%2BC38XnsVeqsr8%3D&md5=831351676798050cf6123e07a7ecbb4eCAS | open url image1
      (b) I. V. Alabugin, K. Gilmore, S. Patil, S. M. Manoharan, S. V. Kovalenko, R. J. Clark, I. Ghiviriga, J. Am. Chem. Soc. 2008, 130, 11535.
         | CrossRef | open url image1

[3]     (a) C. Chatgilialoglu, M. P. Bertrand, C. Ferreri, in S-Centered Radicals (Ed. Z. B. Alfassi) 1999, p. 311 (John Wiley & Sons, Inc.: New York, NY).
      (b) C. Chatgilialoglu, O. Mozziconacci, M. Tamba, K. Bobrowski, G. Kciuk, M. P. Bertrand, S. Gastaldi, V. I. Timokhin, J. Phys. Chem. A 2012, 116, 7623.
         | CrossRef | open url image1

[4]  M. P. Bertrand, Org. Prep. Proced. Int. 1994, 26, 257.
         | CrossRef | 1:CAS:528:DyaK2cXktlCnsrg%3D&md5=e8e15a9189e6b1a01b8d92ebfe4db196CAS | open url image1

[5]  (a) I. De Riggi, J. M. Surzur, M. P. Bertrand, A. Archavlis, R. Faure, Tetrahedron 1990, 46, 5285.
         | CrossRef | 1:CAS:528:DyaK3MXlvFKq&md5=b27edfdf680983f057dff5eb496590a7CAS | open url image1
      (b) T. Taniguchi, A. Idota, H. Ishibashi, Org. Biomol. Chem. 2011, 9, 3151.
         | CrossRef | open url image1
      (c) S. Caddick, D. Hamza, S. N. Wadman, Tetrahedron Lett. 1999, 40, 7285.
         | CrossRef | open url image1

[6]  I. V. Alabugin, V. I. Timokhin, J. N. Abrams, M. Manoharan, R. Abrams, I. Ghiviriga, J. Am. Chem. Soc. 2008, 130, 10984.
         | CrossRef | 1:CAS:528:DC%2BD1cXptVGis7w%3D&md5=0b8f05261ee529427646a7b778cfa835CAS | open url image1

[7]  (a) The regioselectivity of the ring closure was intriguing due to the fact that the activation barriers of the competing 4-exo/5-endo-dig closures are within 1–2 kcal mol–1: I. V. Alabugin, M. Manoharan, J. Am. Chem. Soc. 2005, 127, 9534.
         | CrossRef | 1:CAS:528:DC%2BD2MXltVymt7s%3D&md5=09247eeb2c7c2d97e13ce216ece15afcCAS | open url image1
      (b) Similar σ-vinylexo radical yielded mostly 4-exo-dig products: S.-I. Fujiwara, Y. Shimizu, Y. Imahori, M. Toyofuku, T. Shin-ike, N. Kambe, Tetrahedron Lett. 2009, 50, 3628.
         | CrossRef | open url image1

[8]  (a) The regioselectivity of the competing 4-exo/5-endo-dig closures is finely balanced: Anionic closures: K. Gilmore, M. Manoharan, J. I.-C. Wu, P. V. R. Schleyer, I. V. Alabugin, J. Am. Chem. Soc. 2012, 134, 10584.
         | CrossRef | 1:CAS:528:DC%2BC38Xnt1Wqsrw%3D&md5=d75c7a0b3f66977c2d2154fdcc12fc80CAS | open url image1
         (b) Radical closures: K. Gilmore, I. V. Alabugin, in Unusual Cyclizations: Encyclopedia of Radicals in Chemistry, Biology and Materials (Eds C. Chatgilialoglu, A. Studer) 2012, pp. 693–728 (John Wiley & Sons Ltd: Chichester).
      (c) C. Chatgilialoglu, C. Ferreri, M. Guerra, G. Froudakis, T. Gimisis, J. Am. Chem. Soc. 2002, 124, 10765.
         | CrossRef | open url image1

[9]  M. Tamba, K. Dajka, C. Ferreri, K.-D. Asmus, C. Chatgilialoglu, J. Am. Chem. Soc. 2007, 129, 8716.
         | CrossRef | 1:CAS:528:DC%2BD2sXms12gur8%3D&md5=267cc594803660480a7c2e1267509e5dCAS | open url image1

[10]  (a) Ru catalyst: L. Quebatte, K. Thommes, K. Severin, J. Am. Chem. Soc. 2006, 128, 7440.
         | CrossRef | 1:CAS:528:DC%2BD28XkvVehtrg%3D&md5=f3b1e2efb5d24b4705fb8b06dddee7ecCAS | open url image1
      (b) Cu catalyst: J. M. Muñoz-Molina, T. R. Belderrain, P. J. Pérez, Inorg. Chem. 2010, 49, 642.
         | CrossRef | open url image1

[11]  Y. Amiel, J. Org. Chem. 1971, 36, 3697.
         | CrossRef | 1:CAS:528:DyaE38XisVGgtQ%3D%3D&md5=21619deea277579eef82accd057f527fCAS | open url image1

[12]  (a) Sulfonyl cyanides: R. G. Pews, T. E. Evans, Chem. Commun. 1971, 1397.
         | 1:CAS:528:DyaE38Xjtl2hsw%3D%3D&md5=3ff52d0000ac3578d583fe340073f9f4CAS | open url image1
      (b) J.-M. Fang, M.-Y. Chen, Tetrahedron Lett. 1987, 28, 2853.
         | CrossRef | open url image1
      (c) J.-M. Fang, M.-Y. Chen, M.-C. Cheng, G.-H. Lee, S.-M. Peng, J. Chem. Research (S) 1989, 272. open url image1
      (d) Selenosulfonates: T. G. Back, S. Collins, Tetrahedron Lett. 1980, 21, 2213.
         | CrossRef | open url image1
      (e) R. A. Gancarz, J. L. Kice, J. Org. Chem. 1981, 46, 4899.
         | CrossRef | open url image1
      (f) R. A. Gancarz, R. A. Kice, Tetrahedron Lett. 1980, 21, 4155.
         | CrossRef | open url image1
      (g) T. G. Back, S. Collins, J. Org. Chem. 1981, 46, 3249.
         | CrossRef | open url image1

[13]  (a) X. Liu, X. Duan, Z. Pan, Y. Han, Y. Liang, Synlett 2005, 11, 1752. open url image1
      (b) For general Cu-catalysed ATRA reactions requiring reductants, see W. T. Eckenhoff, S. T. Garrity, T. Pinauer, Eur. J. Inorg. Chem. 2008, 563.
         | CrossRef | open url image1
      (c) W. T. Eckenhoff, T. Pinauer, Catal. Rev. 2010, 52, 1.
         | CrossRef | open url image1

[14]  (a) Y. Amiel, Tetrahedron Lett. 1971, 12, 661.
         | CrossRef | open url image1
      (b) Y. Amiel, J. Org. Chem. 1971, 36, 3691.
         | CrossRef | open url image1
      (c) Iron-catalysed: X. Zeng, L. Ilies, E. Nakamura, Org. Lett. 2012, 14, 954.
         | CrossRef | open url image1

[15]  I. V. Alabugin, M. Manoharan, J. Am. Chem. Soc. 2005, 127, 12583.
         | CrossRef | 1:CAS:528:DC%2BD2MXpt1WisLo%3D&md5=e65afa1550e6a078b25bdbb49d04f1d4CAS | open url image1

[16]  (a) A. G. Davies, B. P. Roberts, J. Chem. Soc. Chem. Commun. 1966, 298.
         | 1:CAS:528:DyaF28Xkt1yqs7k%3D&md5=93bfd04e817bc8f7d96b144bf6cd2537CAS | open url image1
      (b) P. G. Allies, P. B. Brindley, J. Chem. Soc. B 1969, 1126.
         | CrossRef | open url image1
      (c) A. G. Davies, B. P. Roberts, J. Chem. Soc. Chem. Commun. 1969, 699. open url image1
      (d) P. J. Krusic, J. K. Kochi, J. Am. Chem. Soc. 1969, 91, 3942.
         | CrossRef | open url image1
      (e) R. Rensch, H. Friebolin, Chem. Ber. 1977, 110, 2189.
         | CrossRef | open url image1
      (f) For a review on the topic see: C. Ollivier, P. Renaud, Chem. Rev. 2001, 101, 3415.
         | CrossRef | open url image1

[17]  (a) K. Nozaki, K. Oshima, K. Utimoto, J. Am. Chem. Soc. 1987, 109, 2547.
         | CrossRef | 1:CAS:528:DyaL2sXitFCjtLo%3D&md5=5a85daa38b231d496f137cb6ff37f118CAS | open url image1
      (b) K. Nozaki, K. Oshima, K. Utimoto, Bull. Chem. Soc. Jpn. 1987, 60, 3465.
         | CrossRef | open url image1
      (c) K. Nozaki, K. Oshima, K. Utimoto, Tetrahedron 1989, 45, 923.
         | CrossRef | open url image1
      (d) J. Marco-Contelles, Synth. Commun. 1997, 27, 3163.
         | CrossRef | open url image1

[18]  (a) K. Miura, K. Oshima, K. Utimoto, Bull. Chem. Soc. Jpn. 1993, 66, 2356.
         | CrossRef | 1:CAS:528:DyaK2cXhtVOisL4%3D&md5=382153d30e525e0c0c848ddfb6a7f54bCAS | open url image1
      (b) K. Miura, K. Oshima, K. Utimoto, Bull. Chem. Soc. Jpn. 1993, 66, 2348.
         | CrossRef | open url image1

[19]  Y. Ichinose, K. Wakamatsu, K. Nozaki, J.-L. Birbaum, K. Oshima, K. Utimoto, Chem. Lett. 1987, 16, 1647.
         | CrossRef | open url image1

[20]  (a) Y. Ichinose, K. Nozaki, K. Wakamatsu, K. Oshima, K. Utimoto, Tetrahedron Lett. 1987, 28, 3709.
         | CrossRef | 1:CAS:528:DyaL1cXlt12itb4%3D&md5=0fbad5691d49b69b74be3afaf2f684baCAS | open url image1
      (b) S. Tanaka, T. Nakamura, H. Yorimitsu, H. Shinokubo, K. Oshjima, Org. Lett. 2000, 2, 1911.
         | CrossRef | open url image1
      (c) M. Taniguchi, K. Oshjima, K. Utimoto, Chem. Lett. 1993, 22, 1751.
         | CrossRef | open url image1

[21]  (a) G. Lapointe, A. Kapat, K. Weidner, P. Renaud, Pure Appl. Chem. 2012, 84, 1633.
         | CrossRef | 1:CAS:528:DC%2BC38XhtVGltrbF&md5=b5c108c96be1d6c977d119501cc02981CAS | open url image1
      (b) A. Kapat, A. Konig, F. Montermini, P. Renaud, J. Am. Chem. Soc. 2011, 133, 13890.
         | CrossRef | open url image1
      (c) G. Lapointe, K. Schenk, P. Renaud, Org. Lett. 2011, 13, 4774.
         | CrossRef | open url image1
      (d) G. Lapointe, K. Schenk, P. Renaud, Chem. – Eur. J. 2011, 17, 3207.
         | CrossRef | open url image1
      (e) M. Luthy, V. Darmency, P. Renaud, Eur. J. Org. Chem. 2011, 547.
         | CrossRef | open url image1
      (f) K. Weidner, A. Giroult, P. Panchaud, P. Renaud, J. Am. Chem. Soc. 2010, 132, 17511.
         | CrossRef | open url image1
      (g) S. Cren, P. Schar, P. Renaud, K. Schenk, J. Org. Chem. 2009, 74, 2942.
         | CrossRef | open url image1
      (h) N. Mantrand, P. Renaud, Tetrahedron 2008, 64, 11860.
         | CrossRef | open url image1
      (i) A.-P. Schaffner, F. Montermini, D. Pozzi, V. Darmency, E. M. Scanlan, P. Renaud, Adv. Synth. Catal. 2008, 350, 1163.
         | CrossRef | open url image1
      (j) E. Nyfeler, P. Renaud, Org. Lett. 2008, 10, 985.
         | CrossRef | open url image1
      (k) L. Chabaud, Y. Landais, P. Renaud, F. Robert, F. Castet, M. Lucarini, K. Schenk, Chem. – Eur. J. 2008, 14, 2744.
         | CrossRef | open url image1

[22]  (a) A. G. Davies, B. P. Roberts, Acc. Chem. Res. 1972, 5, 387.
         | CrossRef | 1:CAS:528:DyaE3sXivVKlsw%3D%3D&md5=8f52d9156e098fbe2fbd58fc65382115CAS | open url image1
      (b) A. G. Davies, B. P. Roberts, B. R. Sanderson, J. Chem. Soc., Perkin Trans. 2 1973, 626.
         | CrossRef | open url image1

[23]  (a) Y. Amiel, J. Org. Chem. 1974, 39, 3867.
         | CrossRef | 1:CAS:528:DyaE2MXhs1CltQ%3D%3D&md5=53ce45f4f43a6c6a3ce03ca46465b5e4CAS | open url image1
      (b) These compounds also receive increasing attention as radical polymerisation initiators: C. Grigoras, V. Percec, J. Polym. Sci. A 2005, 43, 319.
         | CrossRef | open url image1

[24]  (a) S. Caddick, C. L. Sering, S. N. Wadman, Chem. Commun. 1997, 171.
         | CrossRef | 1:CAS:528:DyaK2sXhtF2rsLw%3D&md5=29825daccef5760778a194f883b02a44CAS | open url image1
      (b) Cyclisations of bis-allenes: S.-K. Kang, Y.-H. Ha, D.-H. Kim, Y. Lim, J. Jung, Chem. Commun. 2001, 14, 1306.
         | CrossRef | open url image1

[25]  M. J. Frish, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 03, Revision E.01 2004 (Gaussian, Inc.: Wallingford, CT).

[26]  The singly occupied orbital can serve as both the electron donor and acceptor. According to NBO analysis, the donor character dominates as follows from the relative energies of n→σ*C-S (17.8 and 9.0 kcal mol–1 for α and β spins, respectively) and σC-S →n (<0.5 and 6.6) interactions (for the adduct of tosyl radical and 1-hexyne). The vinyl radical of the phenylacetylene additions displayed an unusual Lewis structure (hypervalent carbon) which precluded the analysis of hyperconjugative interactions.

[27]  For a more general discussion of hyperconjugative effects in chemistry, see: I. V. Alabugin, K. Gilmore, P. Peterson, WIREs Comput. Mol. Sci. 2011, 1, 109.
         | CrossRef | 1:CAS:528:DC%2BC3MXksVKjsb8%3D&md5=2facdcdaa0b2339045dbb928897e7a31CAS | open url image1

[28]  G. W. Kabalka, H. C. Brown, A. Suzuki, S. Honma, A. Arase, M. Itoh, J. Am. Chem. Soc. 1970, 92, 710.
         | CrossRef | 1:CAS:528:DyaE3cXpvFOltg%3D%3D&md5=b68acb766c89eacfd32c05b9d0a3e979CAS | open url image1

[29]  1H NMR spectra match literature data. B. Gaspar, E. M. Carreira, Angew. Chem. Int. Ed. 2008, 47, 5758.
         | CrossRef | 1:CAS:528:DC%2BD1cXpsFKrsr4%3D&md5=0b6fa37b76b388150941756c134c44fbCAS | open url image1

[30]  Et3B/O2-induced thioyl radical addition to alkenes has also been reported, see: H. Rahaman, M. Ueda, O. Miyata, T. Naito, Org. Lett. 2009, 11, 2651.
         | CrossRef | 1:CAS:528:DC%2BD1MXmtVGmu7k%3D&md5=a5cd4f55a5567febc010388de2e45e8cCAS | open url image1



Supplementary MaterialSupplementary Material 361.8 KB Export Citation