Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Polar Liquid Zwitterion Does Not Critically Destroy Cytochrome c at High Concentration: An Initial Comparative Study with a Polar Ionic Liquid*

Kosuke Kuroda A C , Chiaki Kodo A , Kazuaki Ninomiya B and Kenji Takahashi A
+ Author Affiliations
- Author Affiliations

A Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

B Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

C Corresponding author. Email: kkuroda@staff.kanazawa-u.ac.jp

Australian Journal of Chemistry 72(2) 139-143 https://doi.org/10.1071/CH18533
Submitted: 27 October 2018  Accepted: 30 November 2018   Published: 20 December 2018

Abstract

A polar carboxylate-type zwitterion with a small volume of water can dissolve cytochrome c without significant disruption, compared with the case of a popular polar carboxylate-type ionic liquid, 1-ethyl-3-methylimidazolium acetate. A change in the Soret, Q, and 615 nm bands was not observed in the 80 wt-% polar zwitterion solution, whereas a shift in the Soret band, diminishing Q band, and appearance of the 615 nm band was found in the 80 wt-% polar ionic liquid solution. It suggests that concentrated polar ionic liquid solutions critically disrupt the structure of cytochrome c, and the polar zwitterion solution used in this study was better than a 1-ethyl-3-methylimidazolium acetate solution in a high concentration range.


References

[1]  R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, J. Am. Chem. Soc. 2002, 124, 4974.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  Y. Fukaya, A. Sugimoto, H. Ohno, Biomacromolecules 2006, 7, 3295.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  Y. Fukaya, K. Hayashi, M. Wada, H. Ohno, Green Chem. 2008, 10, 44.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  K. Kuroda, H. Kunimura, Y. Fukaya, H. Ohno, Cellulose 2014, 21, 2199.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  A. Brandt, J. Gräsvik, J. P. Hallett, T. Welton, Green Chem. 2013, 15, 550.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  D. M. Phillips, L. F. Drummy, D. G. Conrady, D. M. Fox, R. R. Naik, M. O. Stone, P. C. Trulove, H. C. De Long, R. A. Mantz, J. Am. Chem. Soc. 2004, 126, 14350.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  H. Xie, S. Li, S. Zhang, Green Chem. 2005, 7, 606.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  Y. Qin, X. M. Lu, N. Sun, R. D. Rogers, Green Chem. 2010, 12, 968.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  A. P. Dadi, S. Varanasi, C. A. Schall, Biotechnol. Bioeng. 2006, 95, 904.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  N. Kamiya, Y. Matsushita, M. Hanaki, K. Nakashima, M. Narita, M. Goto, H. Takahashi, Biotechnol. Lett. 2008, 30, 1037.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. B. Turner, S. K. Spear, J. G. Huddleston, J. D. Holbrey, R. D. Rogers, Green Chem. 2003, 5, 443.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  S. Park, R. J. Kazlauskas, Curr. Opin. Biotechnol. 2003, 14, 432.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  K. Tamura, N. Nakamura, H. Ohno, Biotechnol. Bioeng. 2012, 109, 729.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  K. Fujita, D. R. MacFarlane, M. Forsyth, M. Yoshizawa-Fujita, K. Murata, N. Nakamura, H. Ohno, Biomacromolecules 2007, 8, 2080.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  M. Yoshizawa, M. Hirao, K. Ito-Akita, H. Ohno, J. Mater. Chem. 2001, 11, 1057.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  K. Fujita, Y. Nikawa, H. Ohno, Chem. Commun. 2013, 49, 3257.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  Y. Ito, Y. Kohno, N. Nakamura, H. Ohno, Chem. Commun. 2012, 48, 11220.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  M. Tanaka, T. Motomura, N. Ishii, K. Shimura, M. Onishi, A. Mochizuki, T. Hatakeyama, Polym. Int. 2000, 49, 1709.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  U. K. Singh, R. Patel, Mol. Pharm. 2018, 15, 2684.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  U. K. Singh, M. Kumari, S. H. Khan, H. B. Bohidar, R. Patel, ACS Sustainable Chem. Eng. 2018, 6, 803.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  U. K. Singh, M. Kumari, R. Patel, J. Mol. Liq. 2018, 268, 840.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  R. Patel, M. U. H. Mir, U. K. Singh, I. Beg, A. Islam, A. B. Khan, J. Colloid Interface Sci. 2016, 484, 205.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  S. R. Yeh, S. W. Han, D. L. Rousseau, Acc. Chem. Res. 1998, 31, 727.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  P. Weinkam, J. r. Zimmermann, L. B. Sagle, S. Matsuda, P. E. Dawson, P. G. Wolynes, F. E. Romesberg, Biochemistry 2008, 47, 13470.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  K. Kuroda, H. Satria, K. Miyamura, Y. Tsuge, K. Ninomiya, K. Takahashi, J. Am. Chem. Soc. 2017, 139, 16052.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  H. Satria, K. Kuroda, Y. Tsuge, K. Ninomiya, K. Takahashi, New J. Chem. 2018, 42, 13225.

[27]  S. Zhang, X. Qi, X. Ma, L. Lu, Y. Deng, J. Phys. Chem. B 2010, 114, 3912.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  D. Cheng, X. Chen, Y. Shu, J. Wang, Talanta 2008, 75, 1270.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  N. T. Huy, K. Kamei, T. Yamamoto, Y. Kondo, K. Kanaori, R. Takano, K. Tajima, S. Hara, J. Biol. Chem. 2002, 277, 4152.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  J. B. Schlenoff, Langmuir 2014, 30, 9625.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  K. Kuroda, Y. Kohno, H. Ohno, Chem. Lett. 2017, 46, 870.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  H. Satria, K. Kuroda, Y. Tsuge, K. Ninomiya, K. Takahashi, New J. Chem. 2018, 42, 13225.
         | Crossref | GoogleScholarGoogle Scholar |