Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Bacterial artificial chromosome clones randomly selected for sequencing reveal genomic differences between soybean cultivars

Tingting He A , Longshu Yang A , Xianlong Ding A , Linfeng Chen A , Yanwei Li A , Tanliu Wang A , Hao Zhang A , Junyi Gai A and Shouping Yang A B
+ Author Affiliations
- Author Affiliations

A Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China.

B Corresponding author. Email: spyung@126.com

Crop and Pasture Science 69(2) 131-141 https://doi.org/10.1071/CP17204
Submitted: 2 June 2017  Accepted: 20 November 2017   Published: 29 January 2018

Abstract

This study pioneered the use of multiple technologies to combine the bacterial artificial chromosome (BAC) pooling strategy with high-throughput next- and third-generation sequencing technologies to analyse genomic difference. To understand the genetic background of the Chinese soybean cultivar N23601, we built a BAC library and sequenced 10 randomly selected clones followed by de novo assembly. Comparative analysis was conducted against the reference genome of Glycine max var. Williams 82 (2.0). Therefore, our result is an assessment of the reference genome. Our results revealed that 3517 single nucleotide polymorphisms (SNPs) and 662 insertion–deletions (InDels) occurred in ~1.2 Mb of the genomic region and that four of the 10 BAC clones contained 15 large structural variations (72 887 bp) compared with the reference genome. Gene annotation of the reference genome showed that Glyma.18g181000 was missing from the corresponding position of the 10 BAC clones. Additionally, there may be a problem with the assembly of some positions of the reference genome. Several gap regions in the reference genome could be supplemented by using the complete sequence of the 10 BAC clones. We believe that accurate and complete BAC sequence is a valuable resource that contributes to the completeness of the reference genome.

Additional keywords: BAC clones, comparative genomic analysis, gene variation, structural variation.


References

Bolon YT, Joseph B, Cannon SB, Graham MA, Diers BW, Farmer AD, May GD, Muehlbauer GJ, Specht JE, Tu ZJ (2010) Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean. BMC Plant Biology 10, 41
Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean.CrossRef |

Bossolini E, Wicker T, Knobel PA, Keller B (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. The Plant Journal 49, 704–717.
Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation.CrossRef | 1:CAS:528:DC%2BD2sXjtlGmtro%3D&md5=dfb104663a8ce05deb7545c1bc4544f5CAS |

Brown GG, Formanová N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. The Plant Journal 35, 262–272.
The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats.CrossRef | 1:CAS:528:DC%2BD3sXmvFSmu7Y%3D&md5=ebc12bf83596f3d42a90747882def37aCAS |

Bruggmann R, Bharti AK, Gundlach H, Lai J, Young S, Pontaroli AC, Wei F, Haberer G, Fuks G, Du C, Raymond C, Estep MC, Liu R, Bennetzen JL, Chan AP, Rabinowicz PD, Quackenbush J, Barbazuk WB, Wing RA, Birren B, Nusbaum C, Rounsley S, Mayer KF, Messing J (2006) Uneven chromosome contraction and expansion in the maize genome. Genome Research 16, 1241–1251.
Uneven chromosome contraction and expansion in the maize genome.CrossRef | 1:CAS:528:DC%2BD28XhtVOmtrbM&md5=07a1fe331b0aebf568efc0c88fb1f45bCAS |

Cao W, Fu B, Wu K, Li N, Zhou Y, Gao Z, Lin M, Li G, Wu X, Ma Z, Jia H (2014) Construction and characterization of three wheat bacterial artificial chromosome libraries. International Journal of Molecular Sciences 15, 21896–21912.
Construction and characterization of three wheat bacterial artificial chromosome libraries.CrossRef | 1:CAS:528:DC%2BC2cXitFGhsbnN&md5=be299532bd67a9033cd5398333670edfCAS |

Chaisson MJ, Tesler G (2012) Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics 13, 238
Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory.CrossRef | 1:CAS:528:DC%2BC3sXjslyqt7s%3D&md5=5d5cabd1711a237f5dfcdbb0b21a730bCAS |

Cui W, Qian Y, Zhou X, Lin Y, Jiang J, Chen J, Zhao Z, Shen B (2015) Discovery and characterization of long intergenic non-coding RNAs (lincRNA) module biomarkers in prostate cancer: an integrative analysis of RNA-Seq data. BMC Genomics 16, S3
Discovery and characterization of long intergenic non-coding RNAs (lincRNA) module biomarkers in prostate cancer: an integrative analysis of RNA-Seq data.CrossRef |

Derks MFL (2015) The genome of winter moth (Operophtera brumata) provides a genomic perspective on sexual dimorphism and phenology. Genome Biology and Evolution 7, 2321–2332.
The genome of winter moth (Operophtera brumata) provides a genomic perspective on sexual dimorphism and phenology.CrossRef | 1:CAS:528:DC%2BC2MXitVGnurzL&md5=ce270b436677bf9da733a0448c8227b2CAS |

Ferrarini M, Moretto M, Ward JA, Šurbanovski N, Stevanović V, Giongo L, Viola R, Cavalieri D, Velasco R, Cestaro A (2013) An evaluation of the PacBiol. RS platform for sequencing and de novo assembly of a chloroplast genome. BMC Genomics 14, 670
An evaluation of the PacBiol. RS platform for sequencing and de novo assembly of a chloroplast genome.CrossRef | 1:CAS:528:DC%2BC3sXhvVOntL7L&md5=534ac8897cf4bdb0adc1683d18e320faCAS |

Fu H, Zheng Z, Dooner HK (2002) Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. Proceedings of the National Academy of Sciences of the United States of America 99, 1082–1087.
Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude.CrossRef | 1:CAS:528:DC%2BD38Xht1Wit7Y%3D&md5=aa96232493e9c19d069758b1f21d9ad2CAS |

Gallego F, Feuillet C, Messmer M, Penger A, Graner A, Yano M, Sasaki T, Keller B (1998) Comparative mapping of the two wheat leaf rust resistance loci Lr1 and Lr10 in rice and barley. Genome 41, 328–336.
Comparative mapping of the two wheat leaf rust resistance loci Lr1 and Lr10 in rice and barley.CrossRef | 1:CAS:528:DyaK1cXlvVCrsL0%3D&md5=c6f47857946a517e6a69e550ca4d6645CAS |

Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martion C, Katagiti F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miquel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.
A draft sequence of the rice genome (Oryza sativa L. ssp. japonica).CrossRef | 1:CAS:528:DC%2BD38XivVSqtrw%3D&md5=0de78dd1abcf20fb62bb8e14f9da59f0CAS |

Guyot R, Keller B (2004) Ancestral genome duplication in rice. Genome 47, 610–614.
Ancestral genome duplication in rice.CrossRef | 1:CAS:528:DC%2BD2cXmsVSgs74%3D&md5=baac481d9fcc77a36f159925f3aaf223CAS |

Hu J, Wang K, Huang W, Liu G, Gao Y, Wang J, Huang Q, Ji Y, Qin X, Wan L, Zhu R, Li S, Yang D, Zhu Y (2012) The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. The Plant Cell 24, 109–122.
The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162.CrossRef | 1:CAS:528:DC%2BC38XltVOlu7c%3D&md5=7fd0fd5c2fdd986fead34e3ff45adb69CAS |

Ilut DC, Nydam ML, Hare MP (2014) Defining loci in restriction-based reduced representation genomic data from nonmodel species: sources of bias and diagnostics for optimal clustering. BioMed Research International 2014, 675158
Defining loci in restriction-based reduced representation genomic data from nonmodel species: sources of bias and diagnostics for optimal clustering.CrossRef |

Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431, 569–573.
Pack-MULE transposable elements mediate gene evolution in plants.CrossRef | 1:CAS:528:DC%2BD2cXnvFCnurY%3D&md5=4717f3103772c4aff9eda863f425d5dbCAS |

Katayose Y, Kanamori H, Shimomura M, Ohyanagi H, Ikawa H, Minami H, Shibata M, Ito T, Kurita K, Ito K, Tsubokura Y, Kaga A, Wu J, Matsumoto T, Harada K, Sasaki T (2012) DaizuBase, an integrated soybean genome database including BAC-based physical maps. Breeding Science 61, 661–664.
DaizuBase, an integrated soybean genome database including BAC-based physical maps.CrossRef | 1:CAS:528:DC%2BC38Xpt1yhu7s%3D&md5=afd570b93aaf0d8c50cca57c45a5eaccCAS |

Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303, 1626–1632.
Mobile elements: drivers of genome evolution.CrossRef | 1:CAS:528:DC%2BD2cXhvFCntrk%3D&md5=0d1a9ab3c8cf4a43d49fafe519b9ab04CAS |

Klein RR, Klein PE, Mullet JE, Minx P, Rooney WL, Schertz KF (2005) Fertility restorer locus Rf1 [corrected] of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theoretical and Applied Genetics 111, 994–1012.
Fertility restorer locus Rf1 [corrected] of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12.CrossRef | 1:CAS:528:DC%2BD2MXhtV2ksbrF&md5=9cb7478a35090e63a19ff4aa4234618cCAS |

Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner A, Schulzelefert P (1998) Rapid reorganization of resistance gene homologues in cereal genomes. Proceedings of the National Academy of Sciences of the United States of America 95, 370–375.
Rapid reorganization of resistance gene homologues in cereal genomes.CrossRef | 1:CAS:528:DyaK1cXjtl2gsg%3D%3D&md5=50c205fd97da0c84fb55ae53c1a27af7CAS |

Lin H, Xia PA, Wing R, Zhang Q, Luo M (2012) Dynamic intra-japonica subspecies variation and resource application. Molecular Plant 5, 218–230.
Dynamic intra-japonica subspecies variation and resource application.CrossRef | 1:CAS:528:DC%2BC38Xht1Smt74%3D&md5=d18f773b4d5d747f2711aa8aa71fdc5dCAS |

Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proceedings of the National Academy of Sciences of the United States of America 101, 12404–12410.
Rapid recent growth and divergence of rice nuclear genomes.CrossRef | 1:CAS:528:DC%2BD2cXnsVensrs%3D&md5=c6522d30d5579c9993badf269f66d3c2CAS |

Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Research 14, 860–869.
Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice.CrossRef | 1:CAS:528:DC%2BD2cXjvFykurw%3D&md5=4d90cbea655ac88c67eed20eaa0bb07eCAS |

Matsuhira H, Kagami H, Kurata M, Kitazaki K, Matsunaga M, Hamaguchi Y, Hagihara E, Ueda M, Harada M, Muramatsu A (2012) Unusual and typical features of a novel restorer-of-fertility gene of sugar beet (Beta vulgaris L.). Genetics 192, 1347–1358.
Unusual and typical features of a novel restorer-of-fertility gene of sugar beet (Beta vulgaris L.).CrossRef | 1:CAS:528:DC%2BC3sXjt1eqtr8%3D&md5=c937816159335ced12a5582bb29382caCAS |

Muchero W, Ehlers JD, Roberts PA (2010) Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.]. Theoretical and Applied Genetics 120, 509–518.
Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.].CrossRef | 1:CAS:528:DC%2BC3cXotV2itA%3D%3D&md5=dd8a3836582b176f28a9c9c7b7ab3607CAS |

Pan Y, Deng Y, Lin H, Kudrna DA, Wing RA, Li L, Zhang Q, Luo M (2014) Comparative BAC-based physical mapping of Oryza sativa ssp. indica var. 93-11 and evaluation of the two rice reference sequence assemblies. The Plant Journal 77, 795–805.
Comparative BAC-based physical mapping of Oryza sativa ssp. indica var. 93-11 and evaluation of the two rice reference sequence assemblies.CrossRef | 1:CAS:528:DC%2BC2cXjt1Shs7w%3D&md5=1444b5d8f1c2befaf234fdcd59862b01CAS |

Qi ZM, Wu Q, Han X, Sun YN, Du XY, Liu CY, Jiang HW, Hu GH, Chen QS (2011) Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes. Euphytica 179, 499–514.
Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes.CrossRef |

Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD, Perna NT (2009) Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 25, 2071–2073.
Reordering contigs of draft genomes using the Mauve aligner.CrossRef | 1:CAS:528:DC%2BD1MXpslert7s%3D&md5=491c3bcb8856555e39f38e34ec81d7d0CAS |

Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183.
Genome sequence of the palaeopolyploid soybean.CrossRef | 1:CAS:528:DC%2BC3cXntVClsQ%3D%3D&md5=441586b0b447adc6dcb4f0c28dc7e896CAS |

Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NL, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Research 13, 1818–1827.

Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. The Plant Cell 11, 1769–1784.
Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum.CrossRef | 1:CAS:528:DyaK1MXms1ahsro%3D&md5=b0fab0e4be8829526898ee0b15c01993CAS |

Xu JL, Li ZK (2006) Heavy genetic load associated with the subspecific differentiation of japonica rice (Oryza sativa ssp. japonica L.). Journal of Experimental Botany 57, 2815–2824.
Heavy genetic load associated with the subspecific differentiation of japonica rice (Oryza sativa ssp. japonica L.).CrossRef | 1:CAS:528:DC%2BD28Xotl2mtbg%3D&md5=ef9d321530c3b34481caf6f75a95f00bCAS |

Xu XW, Zhou XH, Wang RR, Peng WL, An Y, Chen LL (2016) Functional analysis of long intergenic non-coding RNAs in phosphate-starved rice using competing endogenous RNA network. Scientific Reports 6, 20715
Functional analysis of long intergenic non-coding RNAs in phosphate-starved rice using competing endogenous RNA network.CrossRef | 1:CAS:528:DC%2BC28XisVamsLY%3D&md5=c1aa622d863e7d79b7e4fa806db4f529CAS |

Yandell M, Ence D (2012) A beginner’s guide to eukaryotic genome annotation. Nature Reviews. Genetics 13, 329–342.
A beginner’s guide to eukaryotic genome annotation.CrossRef | 1:CAS:528:DC%2BC38Xls1Wntrk%3D&md5=758541921d04fd6b63ccd3c5ab440885CAS |

Yang SP, Duan MP, Meng QC, Qiu J, Fan JM, Zhao TJ, Yu DY, Gai JY (2007) Inheritance and gene tagging of male fertility restoration of cytoplasmic-nuclear male-sterile line NJCMS1A in soybean. Plant Breeding 126, 302–305.
Inheritance and gene tagging of male fertility restoration of cytoplasmic-nuclear male-sterile line NJCMS1A in soybean.CrossRef | 1:CAS:528:DC%2BD2sXntlOmu7g%3D&md5=5c5dd43516191cd8027982ab11b09f60CAS |

Zhang HB, Zhao X, Ding X, Paterson AH, Wing RA (1995) Preparation of megabase-size DNA from plant nuclei. The Plant Journal 7, 175–184.
Preparation of megabase-size DNA from plant nuclei.CrossRef | 1:CAS:528:DyaK2MXksF2ktrc%3D&md5=791ae163044d3cad07067a0de897dfedCAS |

Zhang Y, He J, Wang Y, Xing G, Zhao J, Li Y, Yang S, Palmer RG, Zhao T, Gai J (2015) Establishment of a 100-seed weight quantitative trait locus-allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes. Journal of Experimental Botany 66, 6311–6325.
Establishment of a 100-seed weight quantitative trait locus-allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes.CrossRef | 1:CAS:528:DC%2BC2MXitVOgtb3J&md5=f34e944bbd81b20484a95e8824d10af8CAS |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (778 KB) Export Citation