CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Crop & Pasture Science   
Crop & Pasture Science
Journal Banner
  Plant Sciences, Sustainable Farming Systems & Food Quality
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Farrer Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Farrer Reviews
blank image

Invited Farrer Review Series. More...


red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 58(6)

Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006

C. R. Wellings

Plant Breeding Institute, The University of Sydney, Private Bag 11, Camden 2570, Australia (seconded from NSW Department Primary Industries). Email: colinw@camden.usyd.edu.au
 
PDF (192 KB) $25
 Export Citation
 Print
  


Abstract

The wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici; Pst) was first detected in Australia in 1979. The features of the initial pathotype suggested that it was of European origin, and later work provided evidence that it was most likely transmitted as adherent spores on travellers’ clothing. Despite long-held views that this cool temperature pathogen would not adapt to Australian conditions, Pst became endemic and progressively adapted to commercial wheat production through step-wise mutation. Several of these mutant pathotypes became frequent in the Pst population, causing widespread infection and significant costs to production (yield and quality losses; chemical control expenditure) in certain cultivars and seasons. Pathotype evolution, including adaptation to native barley grass (Hordeum spp.) populations, is described.

The occurrence of an exotic pathotype of Pst in Western Australia in 2002, and its subsequent spread to eastern Australia, represented a major shift in the pathogen population. This pathotype dominated pathogen populations throughout Australia from 2003, with chemical control expenditure estimated at AU$40–90 million annually.

Another exotic introduction was detected in 1998. Initial data indicated that certain isolates collected from barley grass were highly avirulent to wheat differentials, with the exception of partial virulence to Chinese 166. Further seedling tests revealed that these isolates, tentatively designated barley grass stripe rust (BGYR), were virulent on several Australian barleys, notably those of Skiff parentage. Data, including molecular studies, suggest that BGYR is a new forma specialis of P. striiformis. Field nurseries indicate that BGYR is likely to have little impact on commercial barley, although this may change with further pathotype evolution or the release of susceptible cultivars.

Keywords: host specialisation, pathotype, epidemiology, pathogen population, mutation, selection.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014