CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn


Article << Previous     |     Next >>   Contents Vol 60(11)

Catchment modelling of sediment, nitrogen and phosphorus nutrient loads with SedNet/ANNEX in the Tully–Murray basin

J. D. Armour A B, L. R. Hateley A, G. L. Pitt A

A Queensland Department of Natural Resources and Water, Mareeba, Qld 4880, Australia.
B Corresponding author. Email: john.armour@qld.gov.au
 Full Text
 PDF (208 KB)
 Export Citation


A long-term, annual-average catchment biophysical model (SedNet/ANNEX) was used to calculate sediment, nitrogen (N) and phosphorus (P) loads in the Tully–Murray catchment of north-eastern Australia. A total of 119 000 t year–1 of suspended sediment, equivalent to 430 kg ha–1 year–1, was calculated to be exported to the Great Barrier Reef (GBR). Most of the sediment (64%) was generated from hill-slope erosion. The modelled load of dissolved inorganic N (1159 t year–1 or 4.2 kg N ha–1 year–1) was similar to that from other wet tropics catchments in Queensland with similar areas of sugarcane. Sugarcane produced 77% of this load. The annual loads of total N and total P were 2319 t and 244 t, respectively. Simulations (scenarios) were run to evaluate the impact of improved land management on pollutant loads to the GBR. A combination of improved cultivation and fertiliser management of sugarcane and bananas (99% of cropping land) and restoration of the most degraded riparian areas reduced sediment by 23 000 t year–1 (18%) and dissolved inorganic N by 286 t year–1 (25%). However, this reduction is much less than the reduction of 80% that may be needed in the catchment to meet target chlorophyll loads in the marine environment.

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015