Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover

A. B. Fuertes A , M. Camps Arbestain B F , M. Sevilla A , J. A. Maciá-Agulló A , S. Fiol C , R. López C , R. J. Smernik D , W. P. Aitkenhead B , F. Arce C and F. Macias E
+ Author Affiliations
- Author Affiliations

A Instituto Nacional del Carbón (CSIC), Apartado 73, 33080-Oviedo, Spain.

B New Zealand Biochar Research Centre, Private Bag 11222, Massey University, Palmerston North 4442, New Zealand.

C Departamento de Química Física, Facultad de Química, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain.

D School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.

E Departamento de Edafología y Química Agrícola, Facultad de Biología, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain.

F Corresponding author. Email: M.Camps@massey.ac.nz

Australian Journal of Soil Research 48(7) 618-626 https://doi.org/10.1071/SR10010
Submitted: 5 January 2010  Accepted: 10 May 2010   Published: 28 September 2010

Abstract

The main properties of chars produced from corn stover, either by pyrolysis at 550°C (to produce biochar) or by hydrothermal carbonisation (to produce hydrochar), were studied. Carbonaceous materials were characterised by: SEM imaging, solid-state 13C NMR, FT-IR, Raman spectroscopy, and XPS. The following parameters were determined: elemental composition, cation exchange capacity, acid groups contents, BET, and yield. The hydrochar had a low ash content and low pH (4.7); recovery of C was high (57%), although only about half of the C was aromatic. Atomic O/C and H/C ratios in the hydrochar were higher than in the biochar. The same pattern was observed for the estimated concentration of carboxylic functional groups (0.07 compared with 0.04 mol/kg). The biochar had higher ash content than the hydrochar, and also higher pH (~10) (lime equivalence ~40 kg CaCO3/t). The C recovery (46%) was lower than in the hydrochar, although most of the C recovered was aromatic. Both chars could be used as soil amendments, for very different requirements. Soil responses and the residence times of the chars (especially the hydrochar) must be studied in detail to pursue long-term C sequestration.

Additional keywords: biochar, hydrochar, hydrothermal carbonisation, pyrolysis.


Acknowledgements

We acknowledge the Manawatu Microscopy and Imaging Centre (MMIC) and Doug Hopcroft for assistance in preparing the samples and operating the SEM images. We are grateful to Kina Hira for assistance in the FTIR measurements. M. S. and J. A. M.-A. acknowledge the assistance of the Spanish MCyT for their award of a Postdoctoral Mobility contract and a Juan de la Cierva contract, respectively. M.C.A. is very grateful for financial support from the Ministry of Agriculture and Forestry of New Zealand. The authors thank the anonymous reviewers for the helpful comments and suggestions provided.


References


Amonette J , Joseph S (2009) Characteristics of biochar. Microchemical properties. In ‘Biochar for environmental management’. (Eds J Lehmann, S Joseph) pp. 33–52. (Earthscan Publications Ltd.: London)

Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research 42, 1619–1640.
CrossRef | CAS |

Bergius F , Specht H (1913) ‘Die Anwendung hoher Drucke bei chemischen Vorgängen und eine Nachbildung des Entstehungsprozesses der Steinkhole.’ (Verlag, Wilhelm Knapp: Halle an der Saale, Germany)

Berl E, Schmidt A (1932) Über die entstehung der kohlen. II. Die inkohlung von cellulose und lignin in neutralem medium. Justus Liebigs Annalen der Chemie 493, 97–123.
CrossRef | CAS |

Calvelo-Pereira R , Pardo-Lorenzo R , Aitkenhead W , Macias F , Hedley M , Macia-Agullo JA , Camps-Arbestain M (2010) Influence of pyrolysis temperature on heterotrophic basal soil respiration in biochar/soil mixtures. In ‘NZBRC Biochar Workshop’. Palmerston North, New Zealand, 11–12 February 2010. (Massey University: Palmerston North, New Zealand)

Camps Arbestain M (2010) Biochar research at the NZBRC. The Soil Science Stream. Massey University, Palmerston North, NZ. Available at: www.biochar.co.nz/pdf/NZBRC-2010-v2.pdf

Chapman HD (1965) Cation exchange capacity. In ‘Methods of soil analysis’ (Eds CA Black et al.) (American Society of Agronomy, Inc.: Madison, WI). Agronomy 9, 891–901.

Cheng CH, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta 72, 1598–1610.
CrossRef | CAS |

Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry 37, 1477–1488.
CrossRef | CAS |

Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon JMD (1994) Raman microprobe studies on carbon materials. Carbon 32, 1523–1532.
CrossRef | CAS |

Downie A , Crosky A , Munroe P (2009) Physical properties of biochar. In ‘Biochar for environmental management. Science and technology’. (Eds J Lehmann, S Joseph) pp. 13–32. (Earthscan: London)

Guo Y, Bustin RM (1998) FTIR spectroscopy and reflectance of modern charcoal and fungal decayed woods: Implications for studies of inertite in coals. International Journal of Coal Geology 37, 29–53.
CrossRef | CAS |

Haberhauer G, Rafferty B, Strebl F, Gerzabek MH (1998) Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR-spectroscopy. Geoderma 83, 331–342.
CrossRef | CAS |

Hu B, Wang K, Wu L, Yu S-H, Antonietti M, Titirici MM (2010) Engineering carbon materials from hydrothermal carbonization process of biomass. Advanced Materials 22, 813–828.
CrossRef | CAS | PubMed |

Ibarra JV, Munoz E, Moliner R (1996) FTIR study of the evolution of coal structure during coalification process. Organic Geochemistry 24, 725–735.
CrossRef | CAS |

Karagöz S, Bhaskar T, Muto A, Sakata Y, Oshiki T, Kishimoto T (2005) Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products. Chemical Engineering Journal 108, 127–137.
CrossRef |

Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology 44, 1247–1253.
CrossRef | CAS | PubMed |

Koch A, Krzton A, Finqueneisel G, Heintz O, Weber JV, Zimny T (1998) A study of carbonaceous char oxidation in air by semi-quantitative FTIR spectroscopy. Fuel 77, 563–569.
CrossRef | CAS |

Lehmann J (2007) Bio-energy in the black. Frontiers in Ecology and the Environment 5, 381–387.
CrossRef |

Lehmann J, Gaunt J, Rondon M (2006) Biochar sequestration in terrestrial ecosystems – a review. Mitigation and Adaptation Strategies for Global Change 11, 403–427.
CrossRef |

Lehmann J , Joseph S (2009) ‘Biochar for environmental management.’ (Earthscan Publications Ltd: London)

López R, Gondar D, Iglesias A, Fiol S, Antelo J, Arce F (2008) Acid properties of fulvic and humic acids isolated from two acid forest soils under different vegetation cover and soil depth. European Journal of Soil Science 59, 892–899.
CrossRef |

Matsue N, Wada K (1985) A new equilibrium method for cation-exchange capacity measurement. Soil Science Society of America Journal 49, 574–578.
CrossRef | CAS |

Petit C, Kante K, Bandosz TJ (2010) The role of sulphur-containing groups in ammonia retention on activated carbons. Carbon 48, 654–667.
CrossRef | CAS |

Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) 420 000 years of climate and atmospheric history revealed by the Vostok deep Antartic ice core. Nature 399, 429–436.
CrossRef | CAS |

Pradhan BK, Sandle NK (1998) Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 37, 1323–1332.
CrossRef |

Ritchie JD, Perdue EM (2003) Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochimica et Cosmochimica Acta 67, 85–96.
CrossRef | CAS |

Seifritz W (1993) Should we store carbon in charcoal? International Journal of Hydrogen Energy 18, 405–407.
CrossRef | CAS |

Sevilla M, Fuertes AB (2009a) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47, 2281–2289.
CrossRef | CAS |

Sevilla M, Fuertes AB (2009b) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemistry – A European Journal 15, 4195–4203.
CrossRef | CAS |

Sheng C (2007) Char structure characterized by Raman spectroscopy and its correlations with combustion reactivity. Fuel 86, 2316–2324.
CrossRef | CAS |

Smernik RJ, Baldock JA, Oades JM (2002a) Impact of remote protonation on 13C CPMAS NMR quantitation of charred and uncharred wood. Solid State Nuclear Magnetic Resonance 22, 71–82.
CrossRef | CAS | PubMed |

Smernik RJ, Baldock JA, Oades JM, Whittaker AK (2002b) Determination of T1rH relaxation rates in charred and uncharred wood and consequences for NMR quantitation. Solid State Nuclear Magnetic Resonance 22, 50–70.
CrossRef | CAS | PubMed |

Smernik RJ, Oades JM (2000a) The use of spin counting for determining quantitation in solid state 13C NMR spectra of natural organic matter 1. Model systems and the effects of paramagnetic impurities. Geoderma 96, 101–129.
CrossRef | CAS |

Smernik RJ, Oades JM (2000b) The use of spin counting for determining quantitation in solid state 13C NMR spectra of natural organic matter 2. HF-treated soil fractions. Geoderma 96, 159–171.
CrossRef | CAS |

Smith DM, Chughtai AR (1995) The surface structure and reactivity of black carbon. Colloids and Surfaces 105, 47–77.
CrossRef | CAS |

Titirici M-M, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New Journal of Chemistry 31, 787–789.
CrossRef | CAS |

Ueno M, Kaeamitsu Y, Komiya Y, Sun L (2007) Carbonisation and gasification of bagasse for effective utilisation of sugarcane biomass. International Sugar Journal 110, 22–26.

Van Krevelen DW (1950) Graphical statistical method for the study of structure and reaction processes of coal. Fuel 29, 269–284.
CAS |


Van Soest PJ (1967) Development of a comprehensive system of feed analysis and the application to forages. Journal of Animal Science 26, 119–128.

Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2009) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil ,
CrossRef |

Vimeux F, Cuffey KM, Jouzel J (2002) New insights into Southern Hemisphere temperature changes from Vostok ice cores using deuterium excess corrections. Earth and Planetary Science Letters 203, 829–843.
CrossRef | CAS |

Watts JF , Wolstenholme J (2003) ‘An introduction to surface analysis by XPS and AES.’ (John Wiley & Sons: Chichester, UK)

Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693.
CrossRef | CAS | PubMed |








Rent Article (via Deepdyve) Export Citation Cited By (108)