International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire

Fire ignitions related to radar reflectivity patterns in Arizona and New Mexico

Beth L. Hall

Department of Geography and Environmental Planning, Towson University, 8000 York Road, Towson, MD 21252, USA.

International Journal of Wildland Fire 17(3) 317-327
Submitted: 18 July 2006  Accepted: 8 January 2007   Published: 23 June 2008


Over 5400 lightning-ignited wildfires were detected on federal land in Arizona and New Mexico from 1996 through 1998 during the fire season of May through September. The non-uniform and sporadic spatial nature of precipitation events in this region makes the use of rain gauge data a limited means of assessing when and where a cloud-to-ground lightning strike might have ignited a wildfire due to dry lightning. By analysing weather radar reflectivity data with lightning and wildfire data, characteristics of radar reflectivity can be used by fire weather forecasters to identify regions of increased ignition potential. Critical ranges of reflectivity, life span of a reflectivity cell, and storm movement are characteristics of radar reflectivity that are examined in this analysis. The results of this type of analysis can help focus attention of wildfire personnel to particular locations where there is known to be cloud-to-ground lightning in conjunction with radar reflectivity patterns that have been historically associated with wildfire ignition. Results from the analysis show that wildfire ignitions typically occur near the perimeter of a radar echo. The reflectivity values at the ignition location are less than the highest reflectivity located within the echo, and often magnitudes are sufficiently low to suggest that the precipitation is not reaching the ground in this dry region with high cloud bases. Interpretation of the duration, size and level of lightning activity of the radar echo associated with the ignition indicate that ignitions tend to occur in the early stages of a radar echo. However, there are often multiple storm cells having isolated areas of higher reflectivity within a radar echo at the time of ignition. Nearly two-thirds of radar echoes associated with wildfire ignitions moved more than 50 km throughout the echo’s lifetime. These moving storm systems often propagated in a northerly or easterly direction, and ignitions occurred on the leading edge of the storm in over half of the cases that propagated in the same direction. Forecasters can use results from this study to determine where there is an increased potential of wildfire ignitions when similar radar patterns appear in conjunction with lightning activity in the future.


Adams DKComrie AC1997The North American monsoon.Bulletin of the American Meteorological Society7821972213doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2

Barrows JS (1978) Lightning fires in southwestern forests. USDA Forest Service, Intermountain Research Station. (Ogden, UT)

Beasley WHUman MAJordan DJGanesh C1983Positive cloud to ground lighting return strokes.Journal of Geophysical Research8884758482

Brown RAKaufman CAMacGorman DR2002aCloud-to-ground lightning associated with the evolution of a multi-cell storm.Journal of Geophysical Research1074397

Brown TJ, Hall BL, Mohrle CR, Reinbold HJ (2002b) Coarse assessment of Federal wildland fire occurrence data. Desert Research Institute, Report for the National Wildfire Coordinating Group, CEFA Report 02-04. (Reno, NV)

Carey LDRutledge SA1996A multi-parameter radar case study of the microphysical and kinematic evolution of a lightning producing storm.Meteorology and Atmospheric Physics593364doi:10.1007/BF01032000

Carey LDRutledge SA2003Characteristics of cloud-to-ground lightning in severe and nonsevere storms over the central United States from 1989–1998.Journal of Geophysical Research1084483doi:10.1029/2002JD002951

Cummins KLKrider EPMalone MD1998aThe US National Lightning Detection NetworkTM and applications of cloud-to-ground lightning data by electric power utilities.Transactions on Electromagnetic Compatibility40465480doi:10.1109/15.736207

Cummins KLMurphy MJBardo EAHiscox WLPyle RBPifer AE1998bA combined TOA/MDF technology upgrade of the US National Lightning Detection Network.Journal of Geophysical Research10390359044doi:10.1029/98JD00153

Curran EBRust WD1992Positive ground flashes produced by low-precipitation thunderstorms in Oklahoma on 26 April 1984.Monthly Weather Review120544553doi:10.1175/1520-0493(1992)120<0544:PGFPBL>2.0.CO;2

Durden SLMeagher JPHaddad ZS2004Satellite observations of spatial and interannual variability of lightning and radar reflectivity.Geophysical Research Letters31L18111doi:10.1029/2004GL020384

Flannigan MDWotton BM1991Lightning-ignited forest fires in northwestern Ontario.Canadian Journal of Forest Research21277287doi:10.1139/X91-035

Fulton RABreidenback JPSeo DJMiller DAO’Bannon T1998The WSR-88D rainfall algorithm.Weather and Forecasting13377395doi:10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2

Fuquay DM (1980) Lightning that ignites forest fires. In ‘Proceedings of the Sixth Conference on Fire and Forest Meteorology’, 22–24 April 1980, Seattle, WA. (Eds RE Martin, RL Edmonds, DA Faulkner, JB Harrington, DM Fuquay, BJ Stocks, S Barr) pp. 109–112. (American Meteorological Society: Boston, MA)

Goodman SJBuechler DEWright PDRust WD1988Lightning and precipitation history of a microburst-producing storm.Geophysical Research Letters1511851188

Hondl KDEilts MD1994Doppler radar signatures of developing thunderstorms and their potential to indicate the onset of cloud-to-ground lightning.Monthly Weather Review12218181836

Idone VPDavis DAMoore PKWang YHenderson RWRies MJoamason PF1998Performance evaluation of the US National Lightning Detection Network in eastern New York 2. Location accuracy.Journal of Geophysical Research10390579069doi:10.1029/98JD00155

Kinzer GD1974Cloud-to-ground lightning versus radar reflectivity in Oklahoma thunderstorms.Journal of Atmospheric Sciences31787799doi:10.1175/1520-0469(1974)031<0787:CTGLVR>2.0.CO;2

Laksen HRStansbury EJ1974Association of lightning flashes with precipitation cores extending to height 7 km.Journal of Atmospheric and Territorial Physics3615471553doi:10.1016/0021-9169(74)90232-3

Marshall JSRadhakant S1978Radar precipitation maps as lightning indicators.Journal of Applied Meteorology17206212doi:10.1175/1520-0450(1978)017<0206:RPMALI>2.0.CO;2

Mazur VRust WDGerlach JC1986Evolution of lightning flash density and reflectivity structure in a multi-cell thunderstorm.Journal of Geophysical Research9186908700

Meisner BN, Chase RA, McCutchan MH, Mees R, Benoit JW, Ly B, Albright D, Strauss D, Ferryman T (1993) A lightning fire ignition assessment model. In ‘Proceedings of the 12th international conference on fire and forest meteorology’, 26–28 October 1993, Jekyll Island, GA. pp. 172–178. (Society of American Foresters, American Meteorological Society: Boston, MA)

Molinie GSoula SChauzy S1999Cloud-to-ground lightning activity and radar observations of storms in the Pyrenees range area.Quarterly Journal of the Royal Meteorological Society12531033122

Orville REHuggins GRBurrows WRHolle RLCummins KL2002The North American Lightning Detection Network (NALDN) – first results: 1998–2000.Monthly Weather Review13020982109doi:10.1175/1520-0493(2002)130<2098:TNALDN>2.0.CO;2

Rust WDMacGorman DRArnold RT1981Positive cloud-to-ground lightning flashes in severe storms.Geophysical Research Letters8791794

Schultz MDUnderwood SJRadhakrishnan P2005A method to identify the optimal areal unit for NLDN cloud-to-ground lightning flash data analysis.Journal of Applied Meteorology44739744

Toracinta ERMohr KIZipser EJOrville RE1996A comparison of WSR-88D reflectivities, SSM/I brightness temperatures, and lightning for mesoscale convective systems in Texas. Part I: radar reflectivity and lightning.Journal of Applied Meteorology35902918doi:10.1175/1520-0450(1996)035<0902:ACOWRS>2.0.CO;2

Uman MAKrider EP1989Natural and artificially initiated lightning.Science246457464doi:10.1126/SCIENCE.246.4929.457

van Wagner CE1972Duff consumption by fire in eastern pine stands.Canadian Journal of Forest Research23439doi:10.1139/X72-006

Viegas DXViegas MTSPFerreira AD1992Moisture content of fine forest fuels and fire occurrence in central Portugal.International Journal of Wildland Fire26986doi:10.1071/WF9920069

Woodley WLOlsen ARHerndon AWiggert V1975Comparison of gage and radar methods of convective rain measurement.Journal of Applied Meteorology14909928doi:10.1175/1520-0450(1975)014<0909:COGARM>2.0.CO;2

Export Citation Cited By (3)