International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices

Haiganoush K. Preisler A D , Shyh-Chin Chen B , Francis Fujioka B , John W. Benoit B and Anthony L. Westerling C

A USDA Forest Service, Pacific Southwest Research Station, 800 Buchanan St, West Annex, Albany, CA 94710, USA.

B USDA Forest Service, Pacific Southwest Research Station, Riverside, CA 92507, USA.

C Sierra Nevada Research Institute, PO Box 2039, Merced, CA 95344, USA.

D Corresponding author. Email: hpreisler@fs.fed.us

International Journal of Wildland Fire 17(3) 305-316 http://dx.doi.org/10.1071/WF06162
Submitted: 9 December 2006  Accepted: 11 December 2007   Published: 23 June 2008

Abstract

The National Fire Danger Rating System indices deduced from a regional simulation weather model were used to estimate probabilities and numbers of large fire events on monthly and 1-degree grid scales. The weather model simulations and forecasts are ongoing experimental products from the Experimental Climate Prediction Center at the Scripps Institution of Oceanography. The monthly average Fosberg Fire Weather Index, deduced from the weather simulation, along with the monthly average Keetch–Byram Drought Index and Energy Release Component, were found to be more strongly associated with large fire events on a monthly scale than any of the other stand-alone fire weather or danger indices. These selected indices were used in the spatially explicit probability model to estimate the number of large fire events. Historic probabilities were also estimated using spatially smoothed historic frequencies of large fire events. It was shown that the probability model using four fire danger indices outperformed the historic model, an indication that these indices have some skill. Geographical maps of the estimated monthly wildland fire probabilities, developed using a combination of four indices, were produced for each year and were found to give reasonable matches to actual fire events. This method paves a feasible way to assess the skill of climate forecast outputs, from a dynamical meteorological model, in forecasting the probability of wildland fire severity with known precision.

Additional keywords: FWI, model appraisal, mutual information, NFDRS, semi-parametric logistic regression, spline functions.


References

Andrews PL, Bradshaw LS (1997) FIRES: fire information retrieval and evaluation system – a program for fire danger rating analysis. USDA Forest Service, Intermountain Research Station, General Technical Report INT-367. (Ogden, UT)

Brillinger DR2004Some data analyses using mutual information.Brazilian Journal of Probability and Statistics18163182

Brillinger DR, Preisler HK, Benoit JW (2003) Risk assessment: a forest fire example. In ‘Science and Statistics, Institute of Mathematical Statistics Lecture Notes’. (Ed. DR Goldstein) Monograph Series, pp. 177–196. (IMS: Bethesda, MD)

Brillinger DRPreisler HKBenoit JW2006Probabilistic risk assessment for wildfires.Environmentrics17623633
doi:10.1002/ENV.768

Burgan RE (1988) 1988 Revisions to the 1978 National Fire-Danger Rating System. USDA Forest Service, South eastern Forest Experiment Station, Research Paper SE-273. (Asheville, NC)

Chen S-C2001Model mismatch between global and regional simulation.Geophysical Research Letters2954.14.4

Chen S-CRoads JOJuang H-MHKanamitsu M1999Global to regional simulations of California wintertime precipitation.Journal of Geophysical Research–Atmospheres104D243151731532
doi:10.1029/1998JD200043

Deeming JE, Burgan RE, Cohen JD (1977) The National Fire-Danger Rating System – 1978. USDA Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT-39. (Ogden, UT)

Efron B, Tibshirani R (1993) ‘An Introduction to the Bootstrap.’ (Chapman Hall: New York)

Fosberg MA (1978) Weather in wildland fire management: the fire weather index. In ‘Proceedings of the Conference on Sierra Nevada Meteorology’, 19–21 June 1978, South Lake Tahoe, NV. pp. 1–4. (American Meteorological Society and USDA Forest Service: Boston, MA)

Fujioka FM, Tsou T-H (1985) Probability modelling of a fire weather index. In ‘Proceedings of the Eighth Conference on Fire and Forest Meteorology’, 29 April–2 May 1985, Detroit, MI. (Eds LR Donoghue, RE Martin) pp. 239–243. (Society of American Foresters: Bethesda, MD)

Hastie TJ, Tibshirani R, Friedman J (2001) ‘The Elements of Statistical Learning: Data Mining, Inference, and Prediction.’ (Springer: New York)

Higgins R, Shi W, Yarosh E, Joyce R (2000) Improved US precipitation quality control system and analysis. In ‘NCEP/CPC Atlas 7’. (National Oceanic and Atmospheric Administration: Boulder, CO)

Hoadley JLWestrick KFerguson SAGoodrick SLBradshaw LWerth P2004The effect of model resolution in predicting meteorological parameters used in fire danger rating.Journal of Applied Meteorology4313331347doi:10.1175/JAM2146.1

Hoadley JLRorig MLBradshaw LFerguson SAWestrick KJGoodrick SLWerth P2006Evaluation of MM5 model resolution when applied to prediction of National Fire Danger Rating indexes.International Journal of Wildland Fire15147154doi:10.1071/WF05015

Hong S-YPan H-L1996Non-local boundary layer vertical diffusion in a medium range forecast model.Monthly Weather Review1241023222339doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2

Hosmer DW, Lemeshow S (1989) ‘Applied Logistic Regression.’ (Wiley: New York)

Juang H-MHKanamitsu M1994The NMC nested regional spectral model.Monthly Weather Review122326doi:10.1175/1520-0493(1994)122<0003:TNNRSM>2.0.CO;2

Juang H-MHHong SKanamitsu M1997The NMC regional spectral model. An update.Bulletin of the American Meteorological Society7821252143doi:10.1175/1520-0477(1997)078<2125:TNRSMA>2.0.CO;2

Kalnay EMKanamitsu MKistler RCollins WDeaven DGandin LIredell MSaha SWhite GWoollen JZhu YLeetmaa AReynolds BChelliah MEbisuzaki WHiggins WJanowiak JMo KCRopelewski CWang JJenne RJoseph D1996The NCEP/NCAR 40-year reanalysis project.Bulletin of the American Meteorological Society77437471doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

NWCG Fire Weather Working Team (2005) National Fire Danger Rating System weather station standards. Publication of the National Wildfire Coordinating Group, PMS 426–3. Available at http://www.fs.fed.us/raws/standards/NFDRS_final_revmay05.pdf [Verified 7 May 2008]

Preisler HKWesterling AL2007Statistical model for forecasting monthly large wildfire events in Western United States.Journal of Applied Meteorology and Climatology46710201030doi:10.1175/JAM2513.1

Preisler HKBrillinger DRBurgan REBenoit JW2004Probability-based models for estimating wildfire risk.International Journal of Wildland Fire13133142doi:10.1071/WF02061

R Development Core Team (2004) ‘R: a language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna, Austria) Available at http://www.R-project.org [Verified 7 May 2008]

Roads JOChen S-CFujioka FKanamitsu MJuang H-MH1995Global to regional fire weather forecasts.International Forest Fire News173337

Roads JOChen S-CKanamitsu M2003US regional climate simulations and seasonal forecasts.Journal of Geophysical Research–Atmospheres108D168606
doi:10.1029/2002JD002232

Roads JOFujioka FChen S-CBurgan RE2005Seasonal fire danger forecasts for the USA.International Journal of Wildland Fire14118doi:10.1071/WF03052

Simard AJ, Eenigburg JE, Hobrla SL (1987) Predicting extreme fire potential. In ‘Proceedings Ninth National Conference on Fire and Forest Methodology’, 21–24 April 1987, San Diego, CA. pp. 148–157. (American Meteorological Society: Boston, MA)

Westerling ALGershunov ACayan DR2003Statistical forecasts of the 2003 western wildfire season using canonical correlation analysis.Experimental Long-Lead Forecast Bulletin1212

Wilks DS (1995) ‘Statistical Methods in Atmospheric Sciences.’ (Academic Press: London)



Export Citation Cited By (21)