Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

One-pot iterative native chemical ligation–desulfurisation chemistry leveraging a coumarin-based photolabile protecting group for cysteine

Lucas Kambanis A B , Timothy S. Chisholm A , Peter H. G. Egelund A B , Sameer S. Kulkarni A B and Richard J. Payne https://orcid.org/0000-0002-3618-9226 A B *
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.

B Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia.

* Correspondence to: richard.payne@sydney.edu.au

Handling Editor: Ed Nice

Australian Journal of Chemistry 78, CH25124 https://doi.org/10.1071/CH25124
Submitted: 31 July 2025  Accepted: 27 August 2025  Published online: 23 September 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

An iterative one-pot peptide native chemical ligation (NCL)–desulfurisation strategy, featuring 7-diethylamino-3-methyl coumarin (DEAMC) as an orthogonal protecting group for cysteine, is described. We show that selective desulfurisation of unprotected cysteine residues can be achieved in the presence of DEAMC-protected cysteine residues, allowing subsequent DEAMC photodeprotection and native chemical ligation to be performed without purification. The efficiency of this approach was exemplified through the one-pot synthesis of a 60-residue mucin-1 peptide.

Keywords: coumarin, cysteine, desulfurisation, native chemical ligation, one-pot synthesis, photolabile, solid-phase peptide synthesis.

References

Kent SBH. Total chemical synthesis of proteins. Chem Soc Rev 2009; 38(2): 338-351.
| Crossref | Google Scholar | PubMed |

Bondalapati S, Jbara M, Brik A. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins. Nat Chem 2016; 8(5): 407-418.
| Crossref | Google Scholar | PubMed |

Kulkarni SS, Sayers J, Premdjee B, Payne RJ. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat Rev Chem 2018; 2(4): 122.
| Crossref | Google Scholar |

Conibear AC, Watson EE, Payne RJ, Becker CF. Native chemical ligation in protein synthesis and semi-synthesis. Chem Soc Rev 2018; 47(24): 9046-9068.
| Crossref | Google Scholar | PubMed |

Dawson P, Muir T, Clark-Lewis I, Kent S. Synthesis of proteins by native chemical ligation. Science 1994; 266(5186): 776-779.
| Crossref | Google Scholar | PubMed |

Johnson ECB, Kent SBH. Insights into the mechanism and catalysis of the native chemical ligation reaction. J Am Chem Soc 2006; 128(20): 6640-6646.
| Crossref | Google Scholar | PubMed |

Wan Q, Danishefsky SJ. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed 2007; 46(48): 9248-9252.
| Crossref | Google Scholar | PubMed |

Haase C, Seitz O. Extending the scope of native chemical peptide coupling. Angew Chem Int Ed 2008; 47(9): 1553-1556.
| Crossref | Google Scholar | PubMed |

Chisholm TS, Clayton D, Dowman LJ, Sayers J, Payne RJ. Native chemical ligation–photodesulfurization in flow. J Am Chem Soc 2018; 140(29): 9020-9024.
| Crossref | Google Scholar | PubMed |

10  Malins LR, Payne RJ. Synthetic amino acids for applications in peptide ligation–desulfurization chemistry. Aust J Chem 2015; 68(4): 521-537.
| Google Scholar |

11  Sayers J, Thompson RE, Perry KJ, Malins LR, Payne RJ. Thiazolidine-protected β-thiol asparagine: applications in one-pot ligation–desulfurization chemistry. Org Lett 2015; 17(19): 4902-4905.
| Crossref | Google Scholar | PubMed |

12  Haase C, Rohde H, Seitz O. Native chemical ligation at valine. Angew Chem Int Ed 2008; 47(36): 6807-6810.
| Crossref | Google Scholar | PubMed |

13  Chen J, Wan Q, Yuan Y, Zhu J, Danishefsky SJ. Native chemical ligation at valine: a contribution to peptide and glycopeptide synthesis. Angew Chem Int Ed 2008; 47(44): 8521-8524.
| Crossref | Google Scholar | PubMed |

14  Dawson PE. Native chemical ligation combined with desulfurization and deselenization: a general strategy for chemical protein synthesis. Isr J Chem 2011; 51(8–9): 862-867.
| Crossref | Google Scholar |

15  Thompson RE, Chan B, Radom L, Jolliffe KA, Payne RJ. Chemoselective peptide ligation–desulfurization at aspartate. Angew Chem Int Ed 2013; 52(37): 9723-9727.
| Crossref | Google Scholar | PubMed |

16  Cergol KM, Thompson RE, Malins LR, Turner P, Payne RJ. One-pot peptide ligation–desulfurization at glutamate. Org Lett 2014; 16(1): 290-293.
| Crossref | Google Scholar | PubMed |

17  Malins LR, Cergol KM, Payne RJ. Chemoselective sulfenylation and peptide ligation at tryptophan. Chem Sci 2014; 5(1): 260-266.
| Crossref | Google Scholar |

18  Malins LR, Cergol KM, Payne RJ. Peptide ligation–desulfurization chemistry at arginine. ChemBioChem 2013; 14(5): 559-563.
| Crossref | Google Scholar | PubMed |

19  Malins LR, Giltrap AM, Dowman LJ, Payne RJ. Synthesis of β-thiol phenylalanine for applications in one-pot ligation–desulfurization chemistry. Org Lett 2015; 17(9): 2070-2073.
| Crossref | Google Scholar | PubMed |

20  Liao P, He C. Azole reagents enabled ligation of peptide acyl pyrazoles for chemical protein synthesis. Chem Sci 2024; 15(21): 7965-7974.
| Crossref | Google Scholar | PubMed |

21  Bang D, Kent SBH. A one-pot total synthesis of crambin. Angew Chem Int Ed 2004; 43(19): 2534-2538.
| Crossref | Google Scholar | PubMed |

22  Huang YC, Chen CC, Gao S, Wang YH, Xiao H, Wang F, Tian CL, Li YM. Synthesis of L‐ and D‐ubiquitin by one‐pot ligation and metal‐free desulfurization. Chem Eur J 2016; 22(22): 7623-7628.
| Crossref | Google Scholar | PubMed |

23  Thompson RE, Liu X, Alonso-García N, Pereira PJB, Jolliffe KA, Payne RJ. Trifluoroethanethiol: an additive for efficient one-pot peptide ligation − desulfurization chemistry. J Am Chem Soc 2014; 136(23): 8161-8164.
| Crossref | Google Scholar | PubMed |

24  Siman P, Blatt O, Moyal T, Danieli T, Lebendiker M, Lashuel HA, Friedler A, Brik A. Chemical synthesis and expression of the HIV‐1 Rev protein. ChemBioChem 2011; 12(7): 1097-1104.
| Crossref | Google Scholar | PubMed |

25  Veber D, Milkowski J, Varga S, Denkewalter R, Hirschmann R. Acetamidomethyl. A novel thiol protecting group for cysteine. J Am Chem Soc 1972; 94(15): 5456-5461.
| Crossref | Google Scholar | PubMed |

26  Maity SK, Jbara M, Laps S, Brik A. Efficient palladium‐assisted one‐pot deprotection of (acetamidomethyl) cysteine following native chemical ligation and/or desulfurization to expedite chemical protein synthesis. Angew Chem Int Ed 2016; 55(28): 8108-8112.
| Crossref | Google Scholar | PubMed |

27  Tang S, Si YY, Wang ZP, Mei KR, Chen X, Cheng JY, Zheng JS, Liu L. An efficient one‐pot four‐segment condensation method for protein chemical synthesis. Angew Chem Int Ed 2015; 54(19): 5713-5717.
| Crossref | Google Scholar | PubMed |

28  Spears RJ, McMahon C, Chudasama V. Cysteine protecting groups: applications in peptide and protein science. Chem Soc Rev 2021; 50(19): 11098-11155.
| Crossref | Google Scholar | PubMed |

29  Karas JA, Scanlon DB, Forbes BE, Vetter I, Lewis RJ, Gardiner J, Separovic F, Wade JD, Hossain MA. 2‐Nitroveratryl as a photocleavable thiol‐protecting group for directed disulfide bond formation in the chemical synthesis of insulin. Chem Eur J 2014; 20(31): 9549-9552.
| Crossref | Google Scholar | PubMed |

30  Wang S, Zhou Q, Li Y, Wei B, Liu X, Zhao J, Ye F, Zhou Z, Ding B, Wang P. Quinoline-based photolabile protection strategy facilitates efficient protein assembly. J Am Chem Soc 2022; 144(3): 1232-1242.
| Crossref | Google Scholar | PubMed |

31  Kambanis L, Chisholm TS, Kulkarni SS, Payne RJ. Rapid one-pot iterative diselenide–selenoester ligation using a novel coumarin-based photolabile protecting group. Chem Sci 2021; 12(29): 10014-10021.
| Crossref | Google Scholar | PubMed |

32  Kajihara Y, Yoshihara A, Hirano K, Yamamoto N. Convenient synthesis of a sialylglycopeptide-thioester having an intact and homogeneous complex-type disialyl-oligosaccharide. Carbohydr Res 2006; 341(10): 1333-1340.
| Crossref | Google Scholar | PubMed |

33  Boll E, Drobecq H, Ollivier N, Blanpain A, Raibaut L, Desmet R, Vicogne J, Melnyk O. One-pot chemical synthesis of small ubiquitin-like modifier protein–peptide conjugates using bis (2-sulfanylethyl) amido peptide latent thioester surrogates. Nat Protoc 2015; 10(2): 269-292.
| Crossref | Google Scholar | PubMed |

34  Kambanis L, Ayoub A, Bedding MJ, Egelund PH, Maxwell JW, Franck C, Lambrechts L, Hawkins PM, Chisholm TS, Mackay JP. Expressed protein ligation in flow. J Am Chem Soc 2024; 146(31): 22027-22035.
| Crossref | Google Scholar | PubMed |