Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Liver microsome stability of N-methylated cyclic hexapeptides is decreased by the presence of cis-amide bonds

Huy N. Hoang A B , David P. Fairlie A B * and Timothy A. Hill https://orcid.org/0000-0001-9727-9930 A B *
+ Author Affiliations
- Author Affiliations

A Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia.

B Australian Research Council Centre of Excellence in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia.


Handling Editor: Ed Nice

Australian Journal of Chemistry 78, CH25080 https://doi.org/10.1071/CH25080
Submitted: 16 May 2025  Accepted: 27 August 2025  Published online: 22 September 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

N-methylation of cyclic peptides is a widely used strategy to enhance membrane permeability; however, it can also influence metabolic stability. In celebration of Professor David Craik’s scientific achievements – particularly in the field of peptide research – we were fortunate to gain access to a series of his cyclic peptides to investigate their liver microsomal stability. Our study revealed that the liver microsome stability of a series of 14 cyclic hexapeptides is highly variable, despite minimal differences in sequence, molecular weight and cLogP. Notably, all compounds containing cis-amide bonds exhibited very poor rat liver microsomal stability, with half-lives of less than 3 min. This work highlights a potential metabolic liability that should be taken into account when designing cyclic peptides as potential drug candidates.

Keywords: cis-amide bonds, cyclic peptides, drug clearance, hepatic metabolism, metabolic stability, n-methylation, oral bioavailability, peptide structure.

References

Muttenthaler M, King GF, Adams DJ, Alewood PF. Trends in peptide drug discovery. Nat Rev Drug Discov 2021; 20: 309-325.
| Crossref | Google Scholar | PubMed |

Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des 2013; 81: 136-147.
| Crossref | Google Scholar | PubMed |

Nielsen DS, Shepherd NE, Xu W, Lucke AJ, Stoermer MJ, Fairlie DP. Orally absorbed cyclic peptides. Chem Rev 2017; 117: 8094-8128.
| Crossref | Google Scholar | PubMed |

Brayden DJ, Hill TA, Fairlie DP, Maher S, Mrsny RJ. Systemic delivery of peptides by the oral route: formulation and medicinal chemistry approaches. Adv Drug Deliv Rev 2020; 157: 2-36.
| Crossref | Google Scholar | PubMed |

White TR, Renzelman CM, Rand AC, Rezai T, McEwen CM, Gelev VM, Turner RA, Linington RG, Leung SS, Kalgutkar AS, Bauman JN, Zhang Y, Liras S, Price DA, Mathiowetz AM, Jacobson MP, Lokey RS. On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat Chem Biol 2011; 7: 810-817.
| Crossref | Google Scholar | PubMed |

Bhardwaj G, O’Connor J, Rettie S, Huang YH, Ramelot TA, Mulligan VK, Alpkilic GG, Palmer J, Bera AK, Bick MJ, Di Piazza M, Li X, Hosseinzadeh P, Craven TW, Tejero R, Lauko A, Choi R, Glynn C, Dong L, Griffin R, van Voorhis WC, Rodriguez J, Stewart L, Montelione GT, Craik D, Baker D. Accurate de novo design of membrane-traversing macrocycles. Cell 2022; 185: 3520-3532.e26.
| Crossref | Google Scholar | PubMed |

Räder AFB, Reichart F, Weinmüller M, Kessler H. Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg Med Chem 2018; 26: 2766-2773.
| Crossref | Google Scholar |

Smith DA, Beaumont K, Maurer TS, Di L. Clearance in drug design. J Med Chem 2019; 62: 2245-2255.
| Crossref | Google Scholar |

Smith DA, Beaumont K, Maurer TS, Di L. Relevance of half-life in drug design. J Med Chem 2018; 61: 4273-4282.
| Crossref | Google Scholar | PubMed |

10  Stepan AF, Mascitti V, Beaumont K, Kalgutkar AS. Metabolism-guided drug design. MedChemComm 2013; 4: 631-652.
| Crossref | Google Scholar |

11  Naritomi Y, Terashita S, Kimura S, Suzuki A, Kagayama A, Sugiyama Y. Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab Dispos 2001; 29: 1316-1324.
| Google Scholar | PubMed |

12  Nielsen DS, Lohman R-J, Hoang HN, Fairlie DP, Hill TA. High cell permeability does not predict oral bioavailability for analogues of cyclic heptapeptide sanguinamide A. Aust J Chem 2020; 73: 344-351.
| Crossref | Google Scholar |

13  Boehm M, Beaumont K, Jones R, Kalgutkar AS, Zhang L, Atkinson K, Bai G, Brown JA, Eng H, Goetz GH, Holder BR, Khunte B, Lazzaro S, Limberakis C, Ryu S, Shapiro MJ, Tylaska L, Yan J, Turner R, Leung S, Ramaseshan M, Price DA, Liras S, Jacobson MP, Earp DJ, Lokey RS, Mathiowetz AM, Menhaji-Klotz E. Discovery of potent and orally bioavailable macrocyclic peptide-peptoid hybrid CXCR7 modulators. J Med Chem 2017; 60: 9653-9663.
| Crossref | Google Scholar | PubMed |

14  Lewis I, Schaefer M, Wagner T, Oberer L, Sager E, Wipfli P, Vorherr T. A detailed investigation on conformation, permeability and PK properties of two related cyclohexapeptides. Int J Pept Res Ther 2015; 21: 205-221.
| Crossref | Google Scholar |

15  Rezai T, Yu B, Millhauser GL, Jacobson MP, Lokey RS. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J Am Chem Soc 2006; 128: 2510-2511.
| Crossref | Google Scholar | PubMed |

16  Rand AC, Leung SS, Eng H, Rotter CJ, Sharma R, Kalgutkar AS, Zhang Y, Varma MV, Farley KA, Khunte B, Limberakis C, Price DA, Liras S, Mathiowetz AM, Jacobson MP, Lokey RS. Optimizing PK properties of cyclic peptides: the effect of side chain substitutions on permeability and clearance. MedChemComm 2012; 3: 1282-1289.
| Crossref | Google Scholar | PubMed |

17  Wang CK, Northfield SE, Colless B, Chaousis S, Hamernig I, Lohman RJ, Nielsen DS, Schroeder CI, Liras S, Price DA, Fairlie DP, Craik DJ. Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients. Proc Natl Acad Sci USA 2014; 111: 17504-17509.
| Crossref | Google Scholar | PubMed |

18  Wang CK, Northfield SE, Swedberg JE, Colless B, Chaousis S, Price DA, Liras S, Craik DJ. Exploring experimental and computational markers of cyclic peptides: charting islands of permeability. Eur J Med Chem 2015; 97: 202-213.
| Crossref | Google Scholar | PubMed |

19  Nielsen DS, Lohman RJ, Hoang HN, Hill TA, Jones A, Lucke AJ, Fairlie DP. Flexibility versus rigidity for orally bioavailable cyclic hexapeptides. ChemBioChem 2015; 16: 2289-2293.
| Crossref | Google Scholar | PubMed |

20  Hoang HN, Hill TA, Fairlie DP. Connecting hydrophobic surfaces in cyclic peptides increases membrane permeability. Angew Chem Int Ed Engl 2021; 60: 8385-8390.
| Crossref | Google Scholar | PubMed |

21  Vorherr T, Lewis I, Berghausen J, Desrayaud S, Schaefer M. Modulation of oral bioavailability and metabolism for closely related cyclic hexapeptides. Int J Pept Res Ther 2018; 24: 35-48.
| Crossref | Google Scholar | PubMed |

22  Lohman R-J, Nielsen DS, Kok WM, Hoang HN, Hill TA, Fairlie DP. Mirror image pairs of cyclic hexapeptides have different oral bioavailabilities and metabolic stabilities. Chem Commun 2019; 55: 13362-13365.
| Crossref | Google Scholar | PubMed |

23  Hosono Y, Morimoto J, Sando S. A comprehensive study on the effect of backbone stereochemistry of a cyclic hexapeptide on membrane permeability and microsomal stability. Org Biomol Chem 2021; 19: 10326-10331.
| Crossref | Google Scholar | PubMed |

24  Mokkawes T, de Visser SP. Caffeine biodegradation by cytochrome P450 1A2. What determines the product distributions? Chemistry 2023; 29: e202203875.
| Crossref | Google Scholar | PubMed |

25  Gray ALH, Steren CA, Haynes IW, Bermejo GA, Favretto F, Zweckstetter M, Do TD. Structural flexibility of cyclosporine A Is mediated by amide cis–trans isomerization and the chameleonic roles of calcium. J Phys Chem B 2021; 125(4): 1378-1391.
| Crossref | Google Scholar |

26  Ohta K, Agematu H, Yamada T, Kaneko K, Tsuchida T. Production of human metabolites of cyclosporin A, AM1, AM4N and AM9, by microbial conversion. J Biosci Bioeng 2005; 99(4): 390-395.
| Crossref | Google Scholar | PubMed |

27  Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, Morris J. Ritonavir: an extraordinary example of conformational polymorphism. Pharm Res 2001; 18: 859-866.
| Crossref | Google Scholar | PubMed |

28  Sevrioukova IF, Poulos TL. Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. Proc Natl Acad Sci USA 2010; 107: 18422-18427.
| Crossref | Google Scholar | PubMed |

29  Perrin L, Loiseau N, André F, Delaforge M. Metabolism of N-methyl-amide by cytochrome P450s. FEBS J 2011; 278: 2167-2178.
| Crossref | Google Scholar | PubMed |

30  Delaforge M, Andre F, Jaouen M, Dolgos H, Benech H, Gomis JM, Noel JP, Cavelier F, Verducci J, Aubagnac JL, Liebermann B. Metabolism of tentoxin by hepatic cytochrome P-450 3A isozymes. Eur J Biochem 1997; 250: 150-157.
| Crossref | Google Scholar | PubMed |

31  OECD/OCDE Test Guideline No. 117 Partition Coefficient (n-octanol/water), HPLC Method. OECD; 2022. Available at https://www.oecd.org/content/dam/oecd/en/publications/reports/2022/06/test-no-117-partition-coefficient-n-octanol-water-hplc-method_g1gh28e7/9789264069824-en.pdf