Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Cool-season grain legume improvement in Australia—use of genetic resources

K. H. M. Siddique A F , W. Erskine A B , K. Hobson C , E. J. Knights C , A. Leonforte D , T. N. Khan A , J. G. Paull E , R. Redden D and M. Materne D
+ Author Affiliations
- Author Affiliations

A The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

B International Centre for Plant Breeding Education and Research, School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

C NSW Department of Primary Industries, 4 Marsden Park Road, Tamworth, NSW 2340, Australia.

D Department of Primary Industries, Biosciences Research Division, Grains Innovation Park, Horsham, Vic. 3401, Australia.

E School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, South Australia 5005, Australia.

F Corresponding author. Email: kadambot.siddique@uwa.edu.au

Crop and Pasture Science 64(4) 347-360 https://doi.org/10.1071/CP13071
Submitted: 22 February 2013  Accepted: 14 May 2013   Published: 2 August 2013

Abstract

The cool-season grain legume industry in Australia, comprising field pea (Pisum sativum L.), chickpea (Cicer arietinum L.), faba bean (Vicia faba L.), lentil (Lens culinaris ssp. culinaris Medik.), and narrow-leaf lupin (Lupinus angustifolius L.), has emerged in the last 40 years to occupy a significant place in cropping systems. The development of all major grain legume crops—including field pea, which has been grown for over 100 years—has been possible through large amounts of genetic resources acquired and utilised in breeding. Initially, several varieties were released directly from these imports, but the past 25 years of grain legume breeding has recombined traits for adaptation and yield for various growing regions. Many fungal disease threats have been addressed through resistant germplasm, with varying successes. Some threats, e.g. black spot in field pea caused by Mycosphaerella pinodes (Berk. and Blox.) Vestergr., require continued exploration of germplasm and new technology. The arrival of ascochyta blight in chickpea in Australia threatened to destroy the chickpea industry of southern Australia, but thanks to resistant germplasm, it is now on its way to recovery. Many abiotic stresses including drought, heat, salinity, and soil nutritional toxicities continue to challenge the expansion of the grain legume area, but recent research shows that genetic variation in the germplasm may offer new solutions. Just as the availability of genetic resources has been key to successfully addressing many challenges in the past two decades, so it will assist in the future, including adapting to climate change. The acquisition of grain legume germplasm from overseas is a direct result of several Australians who fostered collaborations leading to new collection missions enriching the germplasm base for posterity.


References

Armstrong EL, Pate JS, Tennant D (1994) The field pea crop in south western Australia. Patterns of water use and root growth in genotypes of contrasting morphology and growth habit. Australian Journal of Plant Physiology 21, 517–532.
The field pea crop in south western Australia. Patterns of water use and root growth in genotypes of contrasting morphology and growth habit.Crossref | GoogleScholarGoogle Scholar |

Aryamanesh N, Nelson MM, Yan G, Clarke HJ, Siddique KHM (2010) Mapping a major gene for growth habit and QTLs for ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum. Euphytica 173, 307–319.
Mapping a major gene for growth habit and QTLs for ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum.Crossref | GoogleScholarGoogle Scholar |

Aryamanesh N, Byrne O, Hardie DC, Khan TN, Siddique KHM, Yan G (2012) Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum. Crop & Pasture Science 63, 612–618.
Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum.Crossref | GoogleScholarGoogle Scholar |

Avila CM, Sillero JC, Rubiales D, Moreno MT, Torres AM (2003) Identification of RAPD markers linked to the uvf-1 gene conferring hypersensitive resistance against rust (Uromyces viciae-fabae) in Vicia faba L. Theoretical and Applied Genetics 107, 353–358.
Identification of RAPD markers linked to the uvf-1 gene conferring hypersensitive resistance against rust (Uromyces viciae-fabae) in Vicia faba L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1Whuro%3D&md5=5173d365ec40d0e4121f8e0cfe04a3cfCAS | 12698251PubMed |

Avila CM, Satovic Z, Sillero JC, Rubiales D, Moreno MT, Torres AM (2004) Isolate and organ-specific QTLs for Ascochyta blight resistance in faba bean (Vicia faba L.). Theoretical and Applied Genetics 108, 1071–1078.
Isolate and organ-specific QTLs for Ascochyta blight resistance in faba bean (Vicia faba L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivV2jsrg%3D&md5=7bdd5858ddba2ce6292e2d6ad01f3cf7CAS | 15067393PubMed |

Bagheri A, Paull JG, Rathjen AJ (1994) The response of Pisum sativum L. germplasm to high concentrations of soil boron. Euphytica 75, 9–17.
The response of Pisum sativum L. germplasm to high concentrations of soil boron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlslymu7c%3D&md5=67c20e55e3f8badf1e51de21bbe8dbb3CAS |

Bao S, He Y, Zong X, Wang L, Li L, Enneking D, Rose I, Leonforte T, Redden R, Paull J (2008) Collection of pea (Pisum sativum) and faba bean (Vicia faba) germplasm in Yunnan. Plant Genetic Resources Newsletter 156, 11–21.

Barilli E, Sillero JC, Moral A, Rubiales D (2009) Characterization of resistance response of pea (Pisum spp.) against rust (Uromyces pisi). Plant Breeding 128, 665–670.
Characterization of resistance response of pea (Pisum spp.) against rust (Uromyces pisi).Crossref | GoogleScholarGoogle Scholar |

Beech DF, Brinsmead RB (1980) Tyson: a chickpea (Cicer arietinum (L)) cultivar for grain production. Journal of the Australian Institute of Agricultural Science 46, 127–129.

Beeck CP, Wroth JM, Falk DE, Khan T, Cowling WA (2008) Two cycles of recurrent selection lead to simultaneous improvement in black spot resistance and stem strength in field pea. Crop Science 48, 2235–2244.
Two cycles of recurrent selection lead to simultaneous improvement in black spot resistance and stem strength in field pea.Crossref | GoogleScholarGoogle Scholar |

Berger JD, Kumar S, Nayyer H, Street KA, Sandhu JS, Henzell JM, Kaur J, Clarke HC (2012) Temperature-stratified screening of chickpea (Cicer arietinum L.) genetic resource collections reveals very limited reproductive chilling tolerance compared to its annual wild relatives. Field Crops Research 126, 119–129.
Temperature-stratified screening of chickpea (Cicer arietinum L.) genetic resource collections reveals very limited reproductive chilling tolerance compared to its annual wild relatives.Crossref | GoogleScholarGoogle Scholar |

Bond DA, Jellis GJ, Rowland GG, Le Guen J, Robertson LD, Khalil SA, Li-Juan L (1994) Present status and future strategy in breeding faba beans (Vicia faba L.) for resistance to biotic and abiotic stresses. Euphytica 73, 151–166.
Present status and future strategy in breeding faba beans (Vicia faba L.) for resistance to biotic and abiotic stresses.Crossref | GoogleScholarGoogle Scholar |

Boros L, Wawer A (2009) Garden pea varietal susceptibility to Mycosphaerella pinodes and its effect on yield components of single plants. Vegetable Crops Research Bulletin 70, 37–47.
Garden pea varietal susceptibility to Mycosphaerella pinodes and its effect on yield components of single plants.Crossref | GoogleScholarGoogle Scholar |

Bretag TW, MacLeod WJ, Kimber RBE, Moore KJ, Knights EJC, Davidson JA (2008) Management of ascochyta blight in chickpeas in Australia. Australasian Plant Pathology 37, 486–497.
Management of ascochyta blight in chickpeas in Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVOrt74%3D&md5=3499ef875b2805bc3efa677800fd7280CAS |

Brinsmead RB, Retke ML, Irwin JAG, Ryley MJ, Langdon PW (1985) Resistance in chickpea to Phytophthora megasperma f. sp. medicaginis. Plant Disease 69, 504–506.
Resistance in chickpea to Phytophthora megasperma f. sp. medicaginis.Crossref | GoogleScholarGoogle Scholar |

Chenbang H, Yujiao L, Kunlun W, Mingyi Y, Qinhua F, Yang L, Qingbiao Y, Jianping G, Rose IA, Redden RJ, Enneking D (2008) Collecting and surveying landraces of pea (Pisum sativum) and faba bean (Vicia faba) in Qinghai province of China. Plant Genetic Resources Newsletter 156, 1–10.

Clarke HJ, Siddique KHM (2004) Response of chickpea genotypes to low temperature stress during reproductive development. Field Crops Research 90, 323–334.
Response of chickpea genotypes to low temperature stress during reproductive development.Crossref | GoogleScholarGoogle Scholar |

Clarke HJ, Khan TN, Siddique KHM (2004) Pollen selection for chilling tolerance at hybridization leads to improved chickpea cultivars. Euphytica 139, 65–74.
Pollen selection for chilling tolerance at hybridization leads to improved chickpea cultivars.Crossref | GoogleScholarGoogle Scholar |

Clement SL, Hardie DC, Elberson LR (2002) Variation among accessions of Pisum fulvum for resistance to pea weevil. Crop Science 42, 2167–2173.
Variation among accessions of Pisum fulvum for resistance to pea weevil.Crossref | GoogleScholarGoogle Scholar |

Clement SL, McPhee KE, Elberson LR, Evans MA (2009) Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae) resistance in Pisum sativum × Pisum fulvum interspecific crosses. Plant Breeding 128, 478–485.
Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae) resistance in Pisum sativum × Pisum fulvum interspecific crosses.Crossref | GoogleScholarGoogle Scholar |

Croser J, Ahmad F, Clarke H, Siddique KHM (2003) Utilisation of wild Cicer in chickpea improvement—progress, constraints and prospects. Australian Journal of Agricultural Research 54, 429–444.
Utilisation of wild Cicer in chickpea improvement—progress, constraints and prospects.Crossref | GoogleScholarGoogle Scholar |

Davidson JA, Krysinska-Kaczmarek M, Kimber RBE, Ramsey MD (2004) Screening field pea germplasm for resistance to downy mildew (Peronospora viciae) and powdery mildew (Erysiphe pisi). Australasian Plant Pathology 33, 413–417.
Screening field pea germplasm for resistance to downy mildew (Peronospora viciae) and powdery mildew (Erysiphe pisi).Crossref | GoogleScholarGoogle Scholar |

Davidson JA, Krysinska-Kaczmarek M, Leonforte A, McMurray LS (2011) Resistance to downy mildew (Peronospora viciae) in Australian field pea germplasm (Pisum sativum). Australasian Plant Pathology 40, 575–582.
Resistance to downy mildew (Peronospora viciae) in Australian field pea germplasm (Pisum sativum).Crossref | GoogleScholarGoogle Scholar |

Dita MA, Rispail N, Prats E, Rubiales D, Singh KB (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147, 1–24.
Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes.Crossref | GoogleScholarGoogle Scholar |

Duc G, Bao S, Baum M, Redden B, Sadiki M, Suso MJ, Vishiakova M, Zong X (2010) Diversity maintenance and use of Vicia faba L. genetic resources. Field Crops Research 115, 270–278.
Diversity maintenance and use of Vicia faba L. genetic resources.Crossref | GoogleScholarGoogle Scholar |

Ellwood SR, Phan HTT, Jordan M, Hane J, Torres AM, Avila CM, Cruz-Izquierdo S, Oliver RP (2008) Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC Genomics 9, 380
Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris.Crossref | GoogleScholarGoogle Scholar | 18691425PubMed |

Elvira-Recuenco M, Bevan JR, Taylor JD (2003) Differential responses to pea bacterial blight in stems, leaves and pods under glasshouse and field conditions. European Journal of Plant Pathology 109, 555–564.
Differential responses to pea bacterial blight in stems, leaves and pods under glasshouse and field conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVeisL8%3D&md5=a36bd042fc2a96b9b4e157466a2bc53cCAS |

Erskine W, Witcombe JR (1984) ‘Lentil germplasm catalog.’ (ICARDA: Aleppo, Syria)

Erskine W, Adham Y, Holly L (1989) Geographic distribution of variation in quantitative traits in a world lentil collection. Euphytica 43, 97–103.
Geographic distribution of variation in quantitative traits in a world lentil collection.Crossref | GoogleScholarGoogle Scholar |

Fang X, Turner NC, Yan G, Li F, Siddique KHM (2010) Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. Journal of Experimental Botany 61, 335–345.
Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlGltQ%3D%3D&md5=249245f0458e3dde787ecaee841dce86CAS | 19854801PubMed |

Flowers TJ, Gaur P, Gowda CLL, Krishnamurthy L, Samineni S, Siddique KHM, Turner NC, Vadez V, Varshney RK, Colmer TD (2010) Salt sensitivity in chickpea. Plant, Cell & Environment 33, 490–509.
Salt sensitivity in chickpea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltV2huro%3D&md5=86d42b6fe0614b7372397a5e06f22d46CAS |

Fondevilla S, Cubero JI, Rubiales D (2007) Inheritance of resistance to Mycosphaerella pinodes in two wild accessions of Pisum. European Journal of Plant Pathology 119, 53–58.
Inheritance of resistance to Mycosphaerella pinodes in two wild accessions of Pisum.Crossref | GoogleScholarGoogle Scholar |

Fondevilla S, Rubiales D, Moreno MT, Torres AM (2008) Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Molecular Breeding 22, 193–200.
Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFOntLo%3D&md5=59b444cfd4c75e0d29d15e1ecb3a986eCAS |

Gaur PM, Jukanti AK, Varshney RK (2012) Impact of genomic technologies on chickpea breeding strategies. Agronomy 2, 199–221.
Impact of genomic technologies on chickpea breeding strategies.Crossref | GoogleScholarGoogle Scholar |

Gutierrez N, Avila CM, Duc G, Marget P, Suso MJ, Moreno MT, Torres AM (2006) CAPs markers to assist selection of low vicine and convicine contents in faba bean (Vicia faba L.). Theoretical and Applied Genetics 114, 59–66.
CAPs markers to assist selection of low vicine and convicine contents in faba bean (Vicia faba L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WltrnM&md5=4d1c3262911815804c97447eb7fed397CAS | 17013617PubMed |

Gutierrez N, Avila CM, Moreno MT, Torres AM (2008) Development of SCAR markers linked to zt-2, one of the genes controlling absence of tannin in faba bean. Australian Journal of Agricultural Research 59, 62–68.
Development of SCAR markers linked to zt-2, one of the genes controlling absence of tannin in faba bean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Oruw%3D%3D&md5=315c6b6c67161a8c8d08dbfd166ada53CAS |

Hamblin J (1987) Grain legumes in Australia: Invited review. In ‘4th Australian Agronomy Conference’. La Trobe University, Melbourne. (Ed. TG Reeves) (Australian Society of Agronomy: Melbourne)

Hanounik SB, Maliha N (1986) Horizontal and vertical resistance in Vicia faba to chocolate spot caused by Botrytis fabae. Plant Disease 70, 770–773.
Horizontal and vertical resistance in Vicia faba to chocolate spot caused by Botrytis fabae.Crossref | GoogleScholarGoogle Scholar |

Hanounik SB, Robertson LD (1988) New sources of resistance in Vicia faba to chocolate spot caused by Botrytis fabae. Plant Disease 72, 696–698.
New sources of resistance in Vicia faba to chocolate spot caused by Botrytis fabae.Crossref | GoogleScholarGoogle Scholar |

Hanounik SB, Robertson LD (1989) Resistance in Vicia faba germplasm to blight caused by Ascochyta fabae. Plant Disease 73, 202–205.
Resistance in Vicia faba germplasm to blight caused by Ascochyta fabae.Crossref | GoogleScholarGoogle Scholar |

Hawthorne W (2007) A summary of pulse management options to minimize frost damage. Pulse Australia Bulletin PA 2007#02.

Hobson K, Armstrong R, Nicolas M, Connor D, Materne M (2006) Response of lentil (Lens culinaris) germplasm to high concentrations of soil boron. Euphytica 151, 371–382.
Response of lentil (Lens culinaris) germplasm to high concentrations of soil boron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFGqur7I&md5=fe874f95ee74d9fa1ecea7d5a0c1c5dcCAS |

Hollaway GJ, Bretag TW (1995) Occurrence and distribution of races of Pseudomonas syringae pv. pisi in Australia and their specificity towards various field pea (Pisum sativum) cultivars. Australian Journal of Experimental Agriculture 35, 629–632.
Occurrence and distribution of races of Pseudomonas syringae pv. pisi in Australia and their specificity towards various field pea (Pisum sativum) cultivars.Crossref | GoogleScholarGoogle Scholar |

Kabir AH, Paltridge NG, Able AJ, Paull JG, Stangoulis JC (2012) Natural variation for Fe-efficiency is associated with upregulation of Strategy I mechanisms and enhanced citrate and ethylene synthesis in Pisum sativum L. Planta 235, 1409–1419.
Natural variation for Fe-efficiency is associated with upregulation of Strategy I mechanisms and enhanced citrate and ethylene synthesis in Pisum sativum L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnslamsb8%3D&md5=dfb06d7e6d160cc1030d13f48757614eCAS | 22212907PubMed |

Katoch V, Sharma S, Pathania S, Banayal DK, Sharma SK, Rathour R (2010) Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Molecular Breeding 25, 229–237.
Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlKlsw%3D%3D&md5=568809fada53fb0a2c1e365d528d83c3CAS |

Kaur S, Pembleton LW, Cogan NO, Savin KW, Leonforte T, Paull J, Materne M, Forster JW (2011) Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genomics 12, 265–276.
Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVKqsrw%3D&md5=8ed45d11362c83af04453384a4deb161CAS | 21609489PubMed |

Khan MSA, Ramsey MD, Corbiere R, Infantino A, Porta-Puglia A, Bouznal Z, Scott ES (1999) Ascochyta blight of chickpea in Australia: identification, pathogencity and mating type. Plant Pathology 48, 230–234.
Ascochyta blight of chickpea in Australia: identification, pathogencity and mating type.Crossref | GoogleScholarGoogle Scholar |

Khan TN, Timmerman-Vaughan GM, Rubiales D, Warkentin TD, Siddique KHM, Erskine W, Barbetti MJ (2013) Mycosphaerella pinodes and its management in field pea: challenges and opportunities. Field Crops Research 148, 61–77.
Mycosphaerella pinodes and its management in field pea: challenges and opportunities.Crossref | GoogleScholarGoogle Scholar |

Kimber RBE, Paull JG (2011) Identification and genetics of resistance to Cercospora leaf spot (Cercospora zonata) in faba bean (Vicia faba). Euphytica 177, 419–429.
Identification and genetics of resistance to Cercospora leaf spot (Cercospora zonata) in faba bean (Vicia faba).Crossref | GoogleScholarGoogle Scholar |

Kimber RBE, Paull J, Davidson JA (2004) Screening methodologies to identify resistance to Ascochyta leaf blight (Ascochyta fabae) in faba bean germplasm. In ‘Conference Handbook, 5th European Conference on Grain Legumes’. Dijon, France. (Eds INRA) p. 326. (AEP: Dijon, France)

Kimber RBE, Davidson JA, Paull JG (2006). Using genetic diversity within faba bean germplasm to develop resistance to ascochyta blight. In ‘Proceedings of the 1st International Ascochyta Workshop on Grain Legumes, 2–6 July, Le Tronchet, France’. (Eds INRA) pp. B–17. (AEP: Renne, France)

Knights EJ (1989) Association of four simply inherited characters with agronomic performance and seed quality in chickpea (Cicer arietinum). MSc Thesis, University of Sydney, NSW, Australia.

Knights EJ, Southwell RJ, Schwinghamer MW, Harden S (2008) Resistance to Phytophthora medicaginis Hansen and Maxwell in wild Cicer species and its use in breeding root rot resistant chickpea (Cicer arietinum L.). Australian Journal of Agricultural Research 59, 383–387.
Resistance to Phytophthora medicaginis Hansen and Maxwell in wild Cicer species and its use in breeding root rot resistant chickpea (Cicer arietinum L.).Crossref | GoogleScholarGoogle Scholar |

Knights EJ, Siddique KHM, Khan TN, Hobson KB (2009) Development of the Australian chickpea industry: Booms and blights. In ‘Milestones in food legumes research’. (Eds M Ali, S Kumar) pp. 36–57. (Indian Institute of Pulses Research: Kanpur, India)

Kraft JM, Dunne B, Goulden D, Armstrong S (1998) A search for resistance in peas to Mycosphaerella pinodes. Plant Disease 82, 251–253.
A search for resistance in peas to Mycosphaerella pinodes.Crossref | GoogleScholarGoogle Scholar |

Le May C, Schoeny A, Tiroli B, Ney B (2005) Improvement and validation of a pea crop growth model to simulate the growth of cultivars infected with Ascochyta blight. European Journal of Plant Pathology 112, 1–12.
Improvement and validation of a pea crop growth model to simulate the growth of cultivars infected with Ascochyta blight.Crossref | GoogleScholarGoogle Scholar |

Leonforte A, Brouwer JB (1999) Expanding the adaptation of field pea. In ‘Proceedings of the 11th Australian Plant Breeding Conference’. (Eds P Langridge, A Barr, G Auricht) pp. 73–74. (CRC for Molecular Plant Breeding: Adelaide)

Leonforte A, Bretag T, Armstrong E, Smith L (2004) Improving resistance to Septoia blotch (Septoria pisi) in field pea. In ‘Proceedings of the 5th European Conference on Grain Legumes and 2nd International Conference on Legume Genomics and Genetics’. Dijon, France. (Eds AEP Committee) pp. 331. (AEP: Dijon, France)

Leonforte T, Armstrong E, McMurray L, Regan K, Moore S (2006) Breeding reliable and lodging resistant semi-dwarf field peas for Australia. In ‘Proceedings of the 13th Australasian Plant Breeding Conference’. Christchurch, New Zealand. p. 6. (New Zealand Grassland Association: Dunedin, New Zealand)

Leonforte A, Forster J, Redden R, Nicolas M, Salisbury P (2013) Sources of high tolerance to salinity in pea (Pisum sativum L.). Euphytica 189, 203–216.
Sources of high tolerance to salinity in pea (Pisum sativum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSntbrN&md5=4c04323c00211b92d3ad58c3524d2285CAS |

Ling L, Redden R, Xuxiao Z, Berger JD, Bennett SJ (2013) Ecogeographic analysis of pea collection sites from China to determine potential sites with abiotic stresses. Genetic Resources and Crop Evolution 60,
Ecogeographic analysis of pea collection sites from China to determine potential sites with abiotic stresses.Crossref | GoogleScholarGoogle Scholar |

Mao D (2009) Discrimination and recovery of root rot resistance to Phytophthora medicaginis Hansen and Maxwell in chickpea breeding using wild Cicer species. BSc (Hons) Thesis, University of Sydney, NSW, Australia.

Materne MA (2003) Importance of phenology and other key factors in improving the adaptation of lentil (Lens culinaris Medikus) in Australia. PhD Thesis, The University of Western Australia, Perth, Australia.

McMurray LS, Davidson JA, Lines MD, Leonforte A, Salam MU (2011) Combining management and breeding advances to improve field pea (Pisum sativum L.) grain yields under changing climatic conditions in south-eastern Australia. Euphytica 180, 69–88.
Combining management and breeding advances to improve field pea (Pisum sativum L.) grain yields under changing climatic conditions in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

McPhee K (2005) Variation for seedling root architecture in the core collection of pea germplasm. Crop Science 45, 1758–1763.
Variation for seedling root architecture in the core collection of pea germplasm.Crossref | GoogleScholarGoogle Scholar |

Millan T, Clarke HJ, Siddique KHM, Buhairwalla HK, Gaur PM, Kumary J, Gil J, Khal G, Winter P (2006) Chickpea molecular breeding: New tools and concepts. Euphytica 147, 81–103.
Chickpea molecular breeding: New tools and concepts.Crossref | GoogleScholarGoogle Scholar |

Nasir M, Bretag TW (1996) Screening lentil for resistance to Australian isolates of ascochyta blight. LENS Newsletter 23, 7–9.

Pande S, Siddique KHM, Kishore GK, Crouch JH, Gaur PM, Gowda GLL, Bayaa B, Bretag T (2005) Ascochyta blight of chickpea; biology, epidemiology and disease management. Australian Journal of Agricultural Research 56, 317–332.
Ascochyta blight of chickpea; biology, epidemiology and disease management.Crossref | GoogleScholarGoogle Scholar |

Pande S, Galloway J, Gaur PM, Siddique KHM, Tripathi HS, MacLeod MWJ, Baker A, Kishore GK, Taylor P, Narayana Rao J, Joshi S (2006) Botrytis grey mould of chickpea: A review of biology, epidemiology and disease management. Australian Journal of Agricultural Research 57, 1137–1150.
Botrytis grey mould of chickpea: A review of biology, epidemiology and disease management.Crossref | GoogleScholarGoogle Scholar |

Pande S, Sharma M, Gaur PM, Tripathi S, Kaur L, Basandrai AK, Khan T, Gowda CLL, Siddique KHM (2011) Development of screening techniques and identification of new sources of resistance to ascochyta blight disease of chickpea. Australasian Plant Pathology 40, 149–156.
Development of screening techniques and identification of new sources of resistance to ascochyta blight disease of chickpea.Crossref | GoogleScholarGoogle Scholar |

Petkova C, Nikolova V, Kalapchieva SH, Stoeva V, Topalova E, Angelova S (2009) Physiological response and pollen viability of Pisum sativum genotypes under higher temperature influence. Acta Horticulturae 830, 665–672. [ISHS]

Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2002) Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theoretical and Applied Genetics 106, 28–39.

Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2005) Consistent quantitative trait loci in pea for partial resistance to Aphanomyces euteiches isolates from the United States and France. Phytopathology 95, 1287–1293.
Consistent quantitative trait loci in pea for partial resistance to Aphanomyces euteiches isolates from the United States and France.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1eksrzK&md5=58e8677ddbeb406154b5b1b3b994b43dCAS | 18943359PubMed |

Pulse Australia (2012) Australian Pulse Crop Forecast, September 11th 2012. Available at: www.pulseaus.com.au/pdf/Australian%20Pulse%20Crop%20Forecast/2012/Australian%20Pulse%20Crop%20Forecast%20Sept%2011%202012.pdf

Rai R, Singh AK, Singh BD, Joshi AK, Chand R, Srivastava CP (2011) Molecular mapping for resistance to pea rust caused by Uromyces fabae (Pers.) de-Bary. Theoretical and Applied Genetics 123, 803–813.
Molecular mapping for resistance to pea rust caused by Uromyces fabae (Pers.) de-Bary.Crossref | GoogleScholarGoogle Scholar | 21671067PubMed |

Redden B, Leonforte T, Ford R, Croser J, Slattery J (2005) Pea (Pisum sativum L.). In ‘Genetic resources, chromosome engineering, and crop improvement’. (Ed. RJ Singh) pp. 49–83. (CRC Press: Boca Raton, FL)

Redden R, van Leur J, Zong X, Bao S, Yujioa L, Paull J, Leonforte T (2008) Evaluation and utilisation of pea and faba bean germplasm from China. In ‘Global issues, paddock action. Proceedings of the 14th Australian Agronomy Conference’. 21–25 September 2008, Adelaide, S. Aust. (Ed. M Unkovich) (Australian Society of Agronomy/The Regional Institute Ltd: Gosford, NSW) Available at: www.regional.org.au/au//pdf/asa/2008/5804_redden.pdf

Rose IA, Moore KJ (1999) Screening faba bean germplasm for resistance to rust (Uromyces Viciae-Fabae). In ‘Proceedings of the 11th Australian Plant Breeding Conference’. Vol. 2. (Eds P Langridge, A Barr, G Auricht, G Collins, A Granger, D Handford, J Paull) pp. 62–63. (CRC for Molecular Plant Breeding: Adelaide, S. Aust.)

Rubiales RD, Fernandez-Aparicio M, Moral A, Barilli E, Sillero JC, Fondevilla S (2009) Disease resistance in pea (Pisum sativum L.) types for autumn sowings in Mediterranean environments. Czech Journal of Genetics and Plant Breeding 45, 135–142.

Sadras VO, Lake L, Chenu K, McMurray LS, Leonforte A (2012) Water and thermal regimes for field pea in Australia and their implications for breeding. Crop & Pasture Science 63, 33–44.
Water and thermal regimes for field pea in Australia and their implications for breeding.Crossref | GoogleScholarGoogle Scholar |

Shafiq S, Mather DE, Ahmad M, Paull J (2012) Variation in tolerance to radiant frost at reproductive stages in field pea germplasm. Euphytica 186, 831–845.
Variation in tolerance to radiant frost at reproductive stages in field pea germplasm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWhsr7M&md5=0fb33fd811a936f97703c60b22023ffeCAS |

Sharma HC, Pampapathy G, Lanka SK, Ridsdill-Smith TJ (2005) Exploitation of Cicer reticulatum germplasm for resistance to Helicoverpa armigera. Journal of Economic Entomology 98, 2246–2253.
Exploitation of Cicer reticulatum germplasm for resistance to Helicoverpa armigera.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD287ltVCisQ%3D%3D&md5=e7cdc86f563fea27d899cae410976927CAS | 16539156PubMed |

Siddique KHM, Loss SP, Regan KL, Jettner R (1999) Adaptation of cool season grain legumes in Mediterranean-type environments of south-western Australia. Australian Journal of Agricultural Research 50, 375–387.
Adaptation of cool season grain legumes in Mediterranean-type environments of south-western Australia.Crossref | GoogleScholarGoogle Scholar |

Siddique KHM, Regan KL, Baker MJ (2004) New ascochyta blight resistant, high quality kabuli chickpea varieties for Australia. In ‘New directions for a diverse planet: Proceedings of the 4th International Crop Science Congress’. 26 Sept.–1 Oct. 2004, Brisbane, Qld. (Eds T Fischer et al.) (ICSC/The Regional Institute Ltd: Gosford, NSW) Available at: www.cropscience.org.au

Siddique KHM, Johansen C, Kumar Rao JVDK, Ali M (2005) Legumes in sustainable cropping system. In ‘Proceedings of the 4th International Food Legumes Research Conference (IFLRC-IV)’. 18–22 October, New Delhi. (Ed. MC Kharkwal) pp. 787–819 (Indian Society of Genetics and Plant Breeding: New Delhi)

Siddique KHM, Regan KL, Malhotra RS (2007) Registration of ‘Almaz’ Kabuli chickpea. Crop Science 47, 437
Registration of ‘Almaz’ Kabuli chickpea.Crossref | GoogleScholarGoogle Scholar |

Siddique KHM, Johansen C, Turner NC, Jeuffroy M, Hashem A, Sakar D, Gan Y, Alghamdi S (2012) Innovations in agronomy for food legumes. A review. Agronomy for Sustainable Development 32, 45–64.
Innovations in agronomy for food legumes. A review.Crossref | GoogleScholarGoogle Scholar |

Smartt J (1990) ‘Grain legumes evolution and genetic resources’. (Cambridge University Press: Cambridge, UK)

Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327, 818–822.
Breeding technologies to increase crop production in a changing world.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWisLg%3D&md5=a626ce8d106d526a2b24b1ecd9f42503CAS | 20150489PubMed |

Thompson JP, Reen RA, Clewett TG, Sheedy JG, Kelly AM, Gogel BJ, Knights EJ (2011) Hybridisation of Australian chickpea cultivars with wild Cicer spp. increases resistance to root-lesion nematodes (Pratylenchus thornei and P. neglectus). Australasian Plant Pathology 40, 601–611.
Hybridisation of Australian chickpea cultivars with wild Cicer spp. increases resistance to root-lesion nematodes (Pratylenchus thornei and P. neglectus).Crossref | GoogleScholarGoogle Scholar |

Turner NC, Molyneux N, Yang S, Xiong Y-C, Siddique KHM (2011) Climate change in south-west Australia and north-west China: challenges and opportunities for crop production. Crop & Pasture Science 62, 445–456.
Climate change in south-west Australia and north-west China: challenges and opportunities for crop production.Crossref | GoogleScholarGoogle Scholar |

Upadhyaya HD, Dwivedi SL, Ambrose M, Ellis N, Berger J, Smykal P, Debouck D, Duc G, Dumet D, Flavell A, Sharma SK, Mallikarjuna N, Gowda CLL (2011) Legumes genetic resources: management, diversity assessment, and utilization in crop improvement. Euphytica 180, 27–47.
Legumes genetic resources: management, diversity assessment, and utilization in crop improvement.Crossref | GoogleScholarGoogle Scholar |

Vadez V, Krishnamurthy L, Serraj R, Gaur PM, Upadhyaya HD, Hoisington DA, Varshney RK, Turner NC, Siddique KHM (2007) Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at reproductive stage. Field Crops Research 104, 123–129.
Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at reproductive stage.Crossref | GoogleScholarGoogle Scholar |

van Leur JAG, Marcellos H, Makkouk KM, Paull J, Rose IA (2000a) Identification of resistance to bean leaf roll luteo virus in faba bean. Biological and Cultural Tests for Control of Plant Diseases 15, 27

van Leur JAG, Marcellos H, Paull J, Rose IA (2000b) Higher resistance to chocolate spot in faba bean. Biological and Cultural Tests for Control of Plant Diseases 15, 28

van Leur JAG, Aftab M, Leonforte A, Moore S, Freeman AJ (2007) Control of pea seedborne mosaic virus in field pea through resistance breeding. In ‘Proceedings of the 16th Biennial Conference of the Australasian Plant Pathology Society’. Adelaide, S. Aust. p. 154. (The Australasian Plant Pathology Society Inc.: Toowoomba, Qld)

Varshney R, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Varma Penmetsa R, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Lu M-C, Thudi M, Gowda CLL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel Varshney R, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Varma Penmetsa R, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Lu M-C, Thudi M, Gowda CLL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel Varshney R, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Varma Penmetsa R, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Lu M-C, Thudi M, Gowda CLL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel (2013) Draft genome sequence of kabuli chickpea (Cicer arietinum): genetic structure and breeding constraints for crop improvement. Nature Biotechnology 31, 240–246.

Wroth JM (1999) Evidence suggests that Mycosphaerella pinodes infection of Pisum sativum is inherited as a quantitative trait. Euphytica 107, 193–204.
Evidence suggests that Mycosphaerella pinodes infection of Pisum sativum is inherited as a quantitative trait.Crossref | GoogleScholarGoogle Scholar |

Zhang RX, Gossen BD (2007) Heritability estimates and response to selection for resistance to mycosphaerella blight in pea. Crop Science 47, 2303–2307.
Heritability estimates and response to selection for resistance to mycosphaerella blight in pea.Crossref | GoogleScholarGoogle Scholar |

Zhang R, Hwang SF, Gossen BD, Chang KF, Turnbull GD (2007) A quantitative analysis of resistance to Mycosphaerella blight in field pea. Crop Science 47, 162–167.
A quantitative analysis of resistance to Mycosphaerella blight in field pea.Crossref | GoogleScholarGoogle Scholar |

Zong X, Liu X, Guan J, Wang S, Liu Q, Paull JG, Redden R (2009) Molecular variation among Chinese and global winter faba bean germplasm. Theoretical and Applied Genetics 118, 971–978.
Molecular variation among Chinese and global winter faba bean germplasm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis12gs7Y%3D&md5=337b231310db83e46b739bf056d20ecbCAS | 19169661PubMed |

Zong X, Ren J, Guan J, Wang S, Liu Q, Paull JG, Redden R (2010) Molecular variation among Chinese and global germplasm in spring faba bean areas. Plant Breeding 129, 508–513.