Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Splicing-related single nucleotide polymorphism of RAB, member of RAS oncogene family like 2B (RABL2B) jeopardises semen quality in Chinese Holstein bulls

Xiuge Wang A B , Xiaohui Cui B , Yan Zhang A B , Haisheng Hao A , Zhihua Ju B , Deyu Liu C , Qiang Jiang B , Chunhong Yang B , Yan Sun B , Changfa Wang B , Jinming Huang A B D and Huabin Zhu A D
+ Author Affiliations
- Author Affiliations

A Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China.

B Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No. 159 North of Industry Road, Jinan, Shandong 250131, PR China.

C Station of Livestock and Poultry Improvement, Guangxi Zhuang Autonomous Region, No. 24 Yongwu Road, Nanning 530001, PR China.

D Corresponding authors. Emails: huangjinm@sina.com; zhuhuabin@caas.cn

Reproduction, Fertility and Development - https://doi.org/10.1071/RD17111
Submitted: 5 December 2016  Accepted: 18 April 2017   Published online: 30 May 2017

Abstract

RAB, member of RAS oncogene family like 2B (RABL2B) is a member of a poorly characterised clade of the RAS GTPase superfamily, which plays an essential role in male fertility, sperm intraflagellar transport and tail assembly. In the present study, we identified a novel RABL2B splice variant in bovine testis and spermatozoa. This splice variant, designated RABL2B-TV, is characterised by exon 2 skipping. Moreover, a single nucleotide polymorphism (SNP), namely c.125G>A, was found within the exonic splicing enhancer (ESE) motif, indicating that the SNP caused the production of the RABL2B-TV aberrant splice variant. This was demonstrated by constructing a pSPL3 exon capturing vector with different genotypes and transfecting these vectors into murine Leydig tumour cell line (MLTC-1) cells. Expression of the RABL2B-TV transcript was lower in semen from high- versus low-performance bulls. Association analysis showed that sperm deformity rate was significantly lower in Chinese Holstein bulls with the GG or GA genotype than in bulls with the AA genotype (P < 0.05). In addition, initial sperm motility was significantly higher in individuals with the GG or GA genotype than in individuals with the AA genotype (P < 0.05). The findings of the present study suggest that the difference in semen quality in bulls with different RABL2B genotypes is generated via an alternative splicing mechanism caused by a functional SNP within the ESE motif.

Additional keywords: functional single nucleotide polymorphism, splice variant.


References

Adhiambo, C., Blisnick, T., Toutirais, G., Delannoy, E., and Bastin, Pl. (2009). A novel function for the atypical small G protein Rab-like 5 in the assembly of the trypanosome flagellum. J. Cell Sci. 122, 834–841.
A novel function for the atypical small G protein Rab-like 5 in the assembly of the trypanosome flagellum.CrossRef | 1:CAS:528:DC%2BD1MXksFWqsrc%3D&md5=e43c49c8e2aec2cc4d963ea8f51c2769CAS | open url image1

Allan, C. M. (2013). RABL-regulated pathways: a new tale in sperm function. Asian J. Androl. 15, 87.
RABL-regulated pathways: a new tale in sperm function.CrossRef | 1:CAS:528:DC%2BC3sXktFWrug%3D%3D&md5=38c449797e591bcfe5e688920531ae88CAS | open url image1

Blencowe, B. J. (2000). Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem. Sci. 25, 106–110.
Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases.CrossRef | 1:CAS:528:DC%2BD3cXhsFOisr0%3D&md5=af11ced3cb72b279b7153bbfbc9dcad5CAS | open url image1

Caminsky, N., Mucaki, E. J., and Rogan, P. K. (2014). Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res 3, 282. open url image1

Cartegni, L., Chew, S. L., and Krainer, A. R. (2002). Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet. 3, 285–298.
Listening to silence and understanding nonsense: exonic mutations that affect splicing.CrossRef | 1:CAS:528:DC%2BD38XjtFOrtrc%3D&md5=c1c0438db8cbf35ce1da4cc9cf5ff9faCAS | open url image1

Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q., and Krainer, A. R. (2003). ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 31, 3568–3571.
ESEfinder: a web resource to identify exonic splicing enhancers.CrossRef | 1:CAS:528:DC%2BD3sXltVWisLw%3D&md5=e465794a2cb8d67908ad50392ef959beCAS | open url image1

Cassinello, J., Abaigar, T., Gomendio, M., and Roldan, E. R. (1998). Characteristics of the semen of three endangered species of gazelles (Gazella dama mhorr, G. dorcas neglecta and G. cuvieri). J. Reprod. Fertil. 113, 35–45.
Characteristics of the semen of three endangered species of gazelles (Gazella dama mhorr, G. dorcas neglecta and G. cuvieri).CrossRef | 1:CAS:528:DyaK1cXlsVSgtbw%3D&md5=362f05148c58103edc8afec296920962CAS | open url image1

Cochran, S. D., Cole, J. B., Null, D. J., and Hansen, P. J. (2013). Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle. BMC Genet. 14, 49.
Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle.CrossRef | 1:CAS:528:DC%2BC3sXhtVGqtbvM&md5=115276ade2711d7cf698a782816de251CAS | open url image1

Fairbrother, W. G., Yeh, R. F., Sharp, P. A., and Burge, C. B. (2002). Predictive identification of exonic splicing enhancers in human genes. Science 297, 1007–1013.
Predictive identification of exonic splicing enhancers in human genes.CrossRef | 1:CAS:528:DC%2BD38Xmt1Ckt74%3D&md5=90c47131eb1dcf9bedca737534e04e16CAS | open url image1

Gabut, M., Miné, M., Marsac, C., Brivet, M., Tazi, J., and Soret, J. (2005). The SR protein SC35 is responsible for aberrant splicing of the E1α pyruvate dehydrogenase mRNA in a case of mental retardation with lactic acidosis. Mol. Cell. Biol. 25, 3286–3294.
The SR protein SC35 is responsible for aberrant splicing of the E1α pyruvate dehydrogenase mRNA in a case of mental retardation with lactic acidosis.CrossRef | 1:CAS:528:DC%2BD2MXjtlSjs7s%3D&md5=5be36984bc9a161a7bdd811c7722bcf7CAS | open url image1

Gaffney, E. A., Gadêlha, H., Smith, D. J., Blake, J. R., and Kirkman-Brown, J. C. (2011). Mammalian sperm motility: observation and theory. Annu. Rev. Fluid Mech. 43, 501–528.
Mammalian sperm motility: observation and theory.CrossRef | open url image1

Gao, Q., Ju, Z., Zhang, Y., Huang, J., Zhang, X., Qi, C., Li, J., Zhong, J., Li, G., and Wang, C. (2014). Association of TNP2 gene polymorphisms of the bta-miR-154 target site with the semen quality traits of Chinese Holstein bulls. PLoS One 9, e84355.
Association of TNP2 gene polymorphisms of the bta-miR-154 target site with the semen quality traits of Chinese Holstein bulls.CrossRef | open url image1

Garcia-Blanco, M. A. (2006). Alternative splicing: therapeutic target and tool. Prog. Mol. Subcell. Biol. 44, 47–64.
Alternative splicing: therapeutic target and tool.CrossRef | 1:CAS:528:DC%2BD28XhtFeitrnM&md5=d37e60c4368479833c9fcc5cfbeede7fCAS | open url image1

Garcia-Blanco, M. A., Baraniak, A. P., and Lasda, E. L. (2004). Alternative splicing in disease and therapy. Nat. Biotechnol. 22, 535–546.
Alternative splicing in disease and therapy.CrossRef | 1:CAS:528:DC%2BD2cXjsF2jsLc%3D&md5=a84e90ab2b7b4523c2621d62aa04d908CAS | open url image1

Goddard, M. E., and Hayes, B. J. (2009). Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat. Rev. Genet. 10, 381–391.
Mapping genes for complex traits in domestic animals and their use in breeding programmes.CrossRef | 1:CAS:528:DC%2BD1MXmtVKrsLw%3D&md5=17679022f58a654c82491e90b1b21453CAS | open url image1

Guo, F., Yang, B., Ju, Z. H., Wang, X. G., Qi, C., Zhang, Y., Wang, C. F., Liu, H. D., Feng, M. Y., Chen, Y., Xu, Y. X., Zhong, J. F., and Huang, J. M. (2014). Alternative splicing, promoter methylation, and functional SNPs of sperm flagella 2 gene in testis and mature spermatozoa of Holstein bulls. Reproduction 147, 241–252.
Alternative splicing, promoter methylation, and functional SNPs of sperm flagella 2 gene in testis and mature spermatozoa of Holstein bulls.CrossRef | 1:CAS:528:DC%2BC2cXisFartb8%3D&md5=e01b8d23e2aefeebda1c022f48569876CAS | open url image1

Hastings, M. L., and Krainer, A. R. (2001). Pre-mRNA splicing in the new millennium. Curr. Opin. Cell Biol. 13, 302–309.
Pre-mRNA splicing in the new millennium.CrossRef | 1:CAS:528:DC%2BD3MXktVaju7w%3D&md5=d9e863e96a9eb6efea2ea4f717dd1c06CAS | open url image1

Kramer, M., Huse, K., Menzel, U., Backhaus, O., Rosenstiel, P., Schreiber, S., Hampe, J., and Platzer, M. (2011). Constant splice-isoform ratios in human lymphoblastoid cells support the concept of a splico-stat. Genetics 187, 761–770.
Constant splice-isoform ratios in human lymphoblastoid cells support the concept of a splico-stat.CrossRef | 1:CAS:528:DC%2BC3MXmsVSgs7s%3D&md5=c0005a37eb8ef2e9992cdf9f50537daeCAS | open url image1

Liu, X., Ju, Z., Wang, L., Zhang, Y., Huang, J., Li, Q., Li, J., Zhong, J., An, L., and Wang, C. (2011). Six novel single-nucleotide polymorphisms in SPAG11 gene and their association with sperm quality traits in Chinese Holstein bulls. Anim. Reprod. Sci. 129, 14–21.
Six novel single-nucleotide polymorphisms in SPAG11 gene and their association with sperm quality traits in Chinese Holstein bulls.CrossRef | 1:CAS:528:DC%2BC3MXhsFOgu7%2FO&md5=6ce687fd4b155b741cd9c10381304be2CAS | open url image1

Lo, J. C., Jamsai, D., O’Connor, A. E., Borg, C., Clark, B. J., Whisstock, J. C., Field, M. C., Adams, V., Ishikawa, T., Aitken, R. J., Whittle, B., Goodnow, C. C., Ormandy, C. J., and O’Bryan, M. K. (2012). RAB-like 2 has an essential role in male fertility, sperm intra-flagellar transport, and tail assembly. PLoS Genet. 8, e1002969.
RAB-like 2 has an essential role in male fertility, sperm intra-flagellar transport, and tail assembly.CrossRef | 1:CAS:528:DC%2BC38XhsFalu73K&md5=fb18198ee082bfa47d84b5a03fef9819CAS | open url image1

Long, J. C., and Caceres, J. F. (2009). The SR protein family of splicing factors: master regulators of gene expression. Biochem. J. 417, 15–27.
The SR protein family of splicing factors: master regulators of gene expression.CrossRef | 1:CAS:528:DC%2BD1cXhsV2lt7%2FM&md5=e7a4dba4860620294f496c14ae996317CAS | open url image1

Ochs, M. J., Sorg, B. L., Pufahl, L., Grez, M., Suess, B., and Steinhilber, D. (2012). Post-transcriptional regulation of 5-lipoxygenase mRNA expression via alternative splicing and nonsense-mediated mRNA decay. PLoS One 7, e31363.
Post-transcriptional regulation of 5-lipoxygenase mRNA expression via alternative splicing and nonsense-mediated mRNA decay.CrossRef | 1:CAS:528:DC%2BC38XjsVaqtb8%3D&md5=b8c71d8d2b0f055ed52fdce9a8c64047CAS | open url image1

Palhais, B., Præstegaard, V. S., Sabaratnam, R., Doktor, T. K., Lutz, S., Burda, P., Suormala, T., Baumgartner, M., Fowler, B., Bruun, G. H., Andersen, H. S., Kožich, V., and Andresen, B. S. (2015). Splice-shifting oligonucleotide (SSO) mediated blocking of an exonic splicing enhancer (ESE) created by the prevalent c.903+469T>C MTRR mutation corrects splicing and restores enzyme activity in patient cells. Nucleic Acids Res. 43, 4627–4639.
Splice-shifting oligonucleotide (SSO) mediated blocking of an exonic splicing enhancer (ESE) created by the prevalent c.903+469T>C MTRR mutation corrects splicing and restores enzyme activity in patient cells.CrossRef | 1:CAS:528:DC%2BC2MXhsFaisb%2FL&md5=56541e577bf82ec776e969997b0cd4b7CAS | open url image1

Qin, H., Wang, Z., Diener, D., and Rosenbaum, J. (2007). Intraflagellar transport protein 27 is a small G protein involved in cell-cycle control. Curr. Biol. 17, 193–202.
Intraflagellar transport protein 27 is a small G protein involved in cell-cycle control.CrossRef | 1:CAS:528:DC%2BD2sXhtlOntL0%3D&md5=918bef86ee91c40c0cc80ef0d1d7485aCAS | open url image1

Stamm, S., Ben-Ari, S., Rafalska, I., Tang, Y., Zhang, Z., Toiber, D., Thanaraj, T. A., and Soreq, H. (2005). Function of alternative splicing. Gene 344, 1–20.
Function of alternative splicing.CrossRef | 1:CAS:528:DC%2BD2MXkvVSgtQ%3D%3D&md5=fda5ad426b6c169feeefe44efda523e2CAS | open url image1

Tazi, J., Bakkour, N., and Stamm, S. (2009). Alternative splicing and disease. Biochim. Biophys. Acta 1792, 14–26.
Alternative splicing and disease.CrossRef | 1:CAS:528:DC%2BD1cXhsFClsrbP&md5=9672efceaf25b6b2d0bfaf89fdcd4efaCAS | open url image1

Turner, R. M. (2006). Moving to the beat: a review of mammalian sperm motility regulation. Reprod. Fertil. Dev. 18, 25–38.
Moving to the beat: a review of mammalian sperm motility regulation.CrossRef | open url image1

Venables, J. P. (2004). Aberrant and alternative splicing in cancer. Cancer Res. 64, 7647–7654.
Aberrant and alternative splicing in cancer.CrossRef | 1:CAS:528:DC%2BD2cXptFemtb8%3D&md5=1608883c846023ca52295ec7d9a8715dCAS | open url image1

Wang, X., Zhong, J., Gao, Y., Ju, Z., and Huang, J. (2014). A SNP in intron 8 of CD46 causes a novel transcript associated with mastitis in Holsteins. BMC Genomics 15, 630.
A SNP in intron 8 of CD46 causes a novel transcript associated with mastitis in Holsteins.CrossRef | open url image1

Weigel, K. A. (2006). Prospects for improving reproductive performance through genetic selection. Anim. Reprod. Sci. 96, 323–330.
Prospects for improving reproductive performance through genetic selection.CrossRef | open url image1



Export Citation