Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Fate of urea nitrogen in sheep urine applied to soil at different times of the year in the pasture–wheat rotation in south Western Australia

R. B. Thompson and I. R. P. Fillery

Australian Journal of Agricultural Research 49(3) 495 - 510
Published: 1998

Abstract

Sheep urine labelled with 15N-urea was applied toconfined micro-plots at different times of the year to follow the fate of ureaN in urine in the grazed pasture-wheat rotation in south Western Australia.Three field experiments were conducted on the same site on a loamy sand.Applications were made either to pasture residues (Expts 1 and 2) which weresubsequently sown to wheat, orto growing pasture in winter-spring, (Expt 3).In Expt 1, urine was applied in November 1990 (9·8 gN/m2) and April 1991 (46·1 gN/m2). From both applications, losses of15N attributed to NH3volatilisation were c. 50% within 2 weeks of application. Another10% loss was attributed toNO-3 leaching during the followinggrowing season and 15% was recovered by the wheat crop. In Expt 2,urine was applied in October 1991 (4·6 gN/m2), January 1992 (15·6 gN/m2), and March 1992 (13·6 gN/m2). Attributed NH3 losseswithin 2 weeks, in terms of 15N-urea applied, were40% (October and January urine) and 30% (March urine) andNO-3 leaching losses were estimated to be 20% forthe 3 applications. Recoveries in wheat (November 1992) were 4, 7, and12% of 15N applied in the October, January, andMarch urine applications. In Expt 3, urine was applied in August 1992(12·3 g N/m2) and September 1992 (25·9g N/m2). Attributed NH3 losseswere 10% of applied 15N for the August and30% for the September application. Plant uptake of15N was rapid and by mid October was 42% from theAugust application and 47% from the September application. Recovery of15N in soil organic N was generally 17-25% whenurine was applied to pasture residues and bare soil,and 21-37% whenurine was applied to growing pasture. It is suggested thatNH3 volatilisation was the predominant N loss mechanism.The amount of NO-3 leached wasprimarily influenced by summer rainfall, the length of time urine-N was insoil before the onset of winter rainfall, and the distributionof winterrainfall. Little of the 15N-labelled urine was eitherrecovered by, or available for, subsequent wheat crops, suggesting thatcalculations for estimating the N supply from pastures to cereal cropsmustdiscount most N returned in urine by grazing animals.

Keywords: grazed pasture, ammonia volatilisation, nitrate leaching, denitrification,immobilisation, 15N

https://doi.org/10.1071/A97097

© CSIRO 1998

Committee on Publication Ethics


Rent Article (via Deepdyve) Export Citation Cited By (17) Get Permission

View Dimensions