CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Covers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


 

Article << Previous     |     Next >>   Contents Vol 66(4)

Discrete and Polymeric Cu(ii) Coordination Complexes with a Flexible bis-(pyridylpyrazole) Ligand: Structural Diversity and Unexpected Solvothermal Reactivity

Chris S. Hawes A B and Paul E. Kruger A C

A Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand.
B Current address: School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
C Corresponding author. Email: paul.kruger@canterbury.ac.nz

Australian Journal of Chemistry 66(4) 401-408 http://dx.doi.org/10.1071/CH12443
Submitted: 26 September 2012  Accepted: 4 November 2012   Published: 10 December 2012


 
PDF (882 KB) $25
 Supplementary Material
 Export Citation
 Print
  
Abstract

Reported here is the synthesis and structural characterisation of five copper complexes derived from the bis-bidentate ligand 4,4′-methylenebis(1-(2-pyridyl)-3,5-dimethylpyrazole), L. Complex 1, [Cu2L(CH3COO)4(OH2)2]·6H2O, is a single stranded unsaturated helical species that forms a highly connected three-dimensional hydrogen-bonding network, whereas [Cu2L(NO3)4], 2, is a coordination polymer derived from [Cu2L] fragments linked together via bridging nitrate anions to yield undulating two-dimensional sheets with (6,3)-topology. Complexes 3, 4, and 5 co-crystallise within a single batch when L is reacted under solvothermal conditions with Cu(NO3)2·2.5H2O in acetonitrile, and each contains a co-ligand formed by either decomposition of the solvent or ligand. Complex 3, [Cu4(NO3)4(µ-CH3COO)2(µ-OH)2L2], forms an unusual discrete cyclic tetrameric species containing acetate co-ligands derived through acetonitrile hydrolysis; whereas complex 4, [CuL(C2O4)(NO3)], forms a one-dimensional coordination polymer containing bridging oxalate co-ligands, formed through hydrolysis and oxidation of acetonitrile. Complex 5, [Cu2L(µ-CN)2], is a two-dimensional coordination polymer with (6,3) topology where bridging between Cu(i) centres is furnished by cyanide co-ligands, suggesting a ligand decomposition pathway for its origin, and produced with concomitant reduction of the Cu(ii) starting reagent. Having initially obtained 3, 4, and 5 serendipitously each were then prepared as pure phases by careful adjustment and control of the reaction conditions (reactant stoichiometry, concentrations, and solvothermal temperature), details of which are discussed.





References

[1]  Metal-Organic Frameworks: Applications from Catalysis to Gas Storage (Ed. D. Farrusseng) 2011 (Wiley-VCH: Weinheim).

[2]  Coordination Polymers: Design, Analysis and Applications (Eds S. R. Batten, S. M. Neville, D. R. Turner) 2009 (RSC Publishing: Cambridge).

[3]  H. C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 637.

[4]  R. B. Getman, Y. Bae, C. E. Wilmer, R. Q. Snurr, Chem. Rev. 2012, 112, 703.
         | CrossRef | CAS |

[5]  G. Ferey, C. Serre, Chem. Soc. Rev. 2009, 38, 1380.
         | CrossRef | CAS |

[6]  P. J. Steel, Acc. Chem. Res. 2005, 38, 243.
         | CrossRef | CAS |

[7]  K. J. Gagnon, H. P. Perry, A. Clearfield, Chem. Rev. 2012, 112, 1034.
         | CrossRef | CAS |

[8]  V. Colombo, S. Galli, H. J. Choi, G. D. Han, A. Maspero, G. Palmisano, N. Masciocchi, J. R. Long, Chem. Sci. 2011, 2, 1311.
         | CrossRef | CAS |

[9]  (a) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. Bae, J. R. Long, Chem. Rev. 2012, 112, 724.
         | CrossRef | CAS |
      (b) C. S. Hawes, C. M. Fitchett, S. R. Batten, P. E. Kruger, Inorg. Chim. Acta 2012, 389, 112.
         | CrossRef |
      (c) C. S. Hawes, R. Babarao, M. R Hill, K. F. White, B. F. Abrahams, P. E. Kruger, Chem. Commun. 2012, 48, 11558.
         | CrossRef |

[10]  (a) L. Bellarosa, J. M. Castillo, T. Vlugt, S. Calero, N. Lopz, Chem. – Eur. J. 2012, 18, 12260.
         | CrossRef | CAS |
      (b) N. R. Kelly, S. Goetz, S. R. Batten, P. E. Kruger, CrystEngComm. 2007, 10, 68.
         | CrossRef |
      (c) N. R. Kelly, S. Goetz, S. R. Batten, P. E. Kruger, CrystEngComm. 2008, 10, 1018.
         | CrossRef |
      (d) E. Tynan, P. Jensen, P. E. Kruger, A. C. Lees, M. Nieuwenhuyzen, Dalton Trans. 2003, 1223.
         | CrossRef |
      (e) E. Tynan, P. Jensen, N. R. Kelly, P. E. Kruger, A. C. Lees, B. Moubaraki, K. S. Murray, Dalton Trans. 2004, 3440.
         | CrossRef |
      (f) E. Tynan, P. Jensen, P. E. Kruger, A. C. Lees, Chem. Commun. 2004, 776.
         | CrossRef |
      (g) E. Tynan, P. Jensen, P. E. Kruger, A. C. Lees, B. Moubaraki, K. S. Murray, CrystEngComm. 2005, 7, 90.
         | CrossRef |
      (h) C. Butler, S. Goetz, C. M. Fitchett, P. E. Kruger, T. Gunnlaugsson, Inorg. Chem. 2011, 50, 2723.
         | CrossRef |

[11]  P. Hagrman, D. Hagrman, J. Zubieta, Angew. Chem. Int. Ed. 1999, 38, 2638.
         | CrossRef |

[12]  X. Zhang, Coord. Chem. Rev. 2005, 249, 1201.
         | CrossRef | CAS |

[13]  K. E. Knope, H. Kimura, Y. Yasaka, M. Nakahara, M. B. Andrews, C. L. Cahill, Inorg. Chem. 2012, 51, 3883.
         | CrossRef | CAS |

[14]  C. S. Hawes, P. E. Kruger, Polyhedron 2012, in press
         | CrossRef |

[15]  A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
         | CrossRef | CAS |

[16]  A. L. Spek, Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148.
         | CrossRef |

[17]  K. Pavani, M. Singh, A. Ramanan, Aust. J. Chem. 2011, 64, 68.
         | CrossRef | CAS |

[18]  R. T. Stibrany, H. J. Schugar, J. A. Potenza, Acta Crystallogr. Sect. E- Struct. Rep. Online 2005, E61, m1904.
         | CrossRef | CAS |

[19]  X. Chen, M. Tong, Acc. Chem. Res. 2007, 40, 162.
         | CrossRef |

[20]  O. M. Yaghi, H. Li, J. Am. Chem. Soc. 1995, 117, 10401.
         | CrossRef | CAS |

[21]  G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | CrossRef |

[22]  SHELXL-97- Programs for X-ray Crystal Structure Refinement (Ed. G. M. Sheldrick) 1997 (University of Gottingen, Gottingen).

[23]  O. V. Dolomanov, A. J. Blake, N. R. Champness, M. Schröder, J. Appl. Cryst. 2003, 36, 1283.
         | CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 


    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014