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						Abstract
 Producing enough food to meet the needs of an increasing global population is one of the greatest challenges we currently face. The issue of food security is further complicated by impacts of elevated CO2 and climate change. In this viewpoint article, we begin to explore the impacts of elevated CO2 on two specific aspects of plant nutrition and resource allocation that have traditionally been considered separately. First, we focus on arbuscular mycorrhizas, which play a major role in plant nutrient acquisition. We then turn our attention to the allocation of resources (specifically N and C) in planta, with an emphasis on the secondary metabolites involved in plant defence against herbivores. In doing so, we seek to encourage a more integrated approach to investigation of all aspects of plant responses to eCO2.
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