Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology

Functional Plant Biology

Functional Plant Biology

Functional Plant Biology publishes new and significant information on the functional biology of plants at all scales from the molecular through whole plant to community. Read more about the journalMore

Editor-in-Chief: Sergey Shabala

Current Issue

Functional Plant Biology

Volume 43 Number 12 2016

FP16187Tissue tolerance: an essential but elusive trait for salt-tolerant crops

Rana Munns, Richard A. James, Matthew Gilliham, Timothy J. Flowers and Timothy D. Colmer
pp. 1103-1113

For a plant to persist in saline soil, leaves should accumulate sodium and chloride to high concentrations, thus allowing energy-efficient osmotic adjustment. Adverse effects of these ions must be avoided, a situation known as ‘tissue tolerance’. This viewpoint considers the concept of tissue tolerance and how to measure it, to identify useful genetic variation that can be harnessed for plant breeding.

FP15391Natural variation in primary root growth and K+ retention in roots of habanero pepper (Capsicum chinense) under salt stress

Emanuel Bojórquez-Quintal, Nancy Ruiz-Lau, Ana Velarde-Buendía, Ileana Echevarría-Machado, Igor Pottosin and Manuel Martínez-Estévez
pp. 1114-1125

In this work, we demonstrated the natural variation in mechanisms for protection against salt stress in pepper varieties. NaCl-induced K+ and H+ efflux in roots was also studied by ion-selective microelectrodes under application of pharmacological agents. Pharmacological analysis indicated that the NaCl-induced K+ leakage was mediated by TEA+-sensitive KOR channels but not by NSCC channels and we present evidence for participation of proline, and HAK K+ transporter for maintaining K+ homeostasis under salt stress.


Co-ordination between leaf vein and stomatal densities is required to achieve maximum photosynthetic yield. In this work we tested the generality of this co-ordination and found a weak correlation between vein and stomatal densities across 105 angiosperm tree species across altitudes from 800 to 2600 m in South-west China. This reveals decoupled adaptation in leaf venation and stomatal characteristics along a large altitudinal gradient.

FP16104Identification of an orthologous clade of peroxidases that respond to feeding by greenbugs (Schizaphis graminum) in C4 grasses

Erin D. Scully, Teresa Donze-Reiner, Haichuan Wang, Thomas E. Eickhoff, Frederick Baxendale, Paul Twigg, Frank Kovacs, Tiffany Heng-Moss, Scott E. Sattler and Gautam Sarath
pp. 1134-1148

The greenbug can cause significant economic damage to several cultivated grasses. Peroxidases are a class of plant enzymes that have been associated with resistance to aphids. An equivalent region of genomes of three cultivated grasses contained evolutionarily-related peroxidase genes that were induced in response to greenbug herbivory, potentially linking this genomic hotspot to insect resistance.


Understanding how crops respond to environmental stress will expand our capacity to improve production. We explore the physiological and chemical responses of Phaseolus vulgaris L. to different stresses, identifying changes in the abundance of protective metabolites. We identify shifts in C allocation among metabolite pools and, through measuring compound-specific isotope abundance, identify the potential for changes in biochemical fractionation that may impact predictions of intrinsic water use efficiency. Our findings indicate biochemical traits that could help improve strategies to develop crops that can withstand adverse conditions.

FP16150Adaptation to and recovery from drought stress at vegetative stages in wheat (Triticum aestivum) cultivars

Muhammad Abid, Zhongwei Tian, Syed Tahir Ata-Ul-Karim, Feng Wang, Yang Liu, Rizwan Zahoor, Dong Jiang and Tingbo Dai
pp. 1159-1169

Intermittent drought and re-wetting events are common in agricultural systems. A study was conducted to evaluate the degree of morpho-physiological adaptations and recovery after re-watering in wheat during drought stress at different plant growth stages. The projected results indicated that genotypic variations in adaptability to and recovery from drought stress are indicators of drought tolerance and grain yield sustainability.


Plants rely on adaptive defence mechanisms that mitigate against herbivory and increase the chance of survival. This comes with energy costs as defined by optimal defence theory so ideally should be targeted or responsive. Thrips cause seasonal damage to a species of Rhododendron but the impact is limited by tissue specific accumulation of both invertebrate toxins and trichomes explaining, surprisingly for the first time, how Rhododendrons tolerate herbivory.

FP16138Responses of woody Cerrado species to rising atmospheric CO2 concentration and water stress: gains and losses

João Paulo Souza, Nayara M. J. Melo, Eduardo G. Pereira, Alessandro D. Halfeld, Ingrid N. Gomes and Carlos Henrique B. A. Prado
pp. 1183-1193

Native plant responses to climate change are a critical issue for global ecology and food security. We investigated the relationships among rising atmospheric CO2, soil water availability and the growth of woody Cerrado species in open-top chambers. We found that the isolated effects of elevated CO2 were positive but under water stress, the growth of woody Cerrado species was impaired. Our results, which are the first to consider the influence of rising CO2 on these plants, will aid in Cerrado ecology and management.


Cereal yield is limited by the rate of starch biosynthesis and previous experiments have focussed on increasing starch in leaves or seeds. This study demonstrates that increasing leaf and seed starch simultaneously by using tissue specific overexpression of AGPase enhances yield more than with leaf or seed starch alone. Our results demonstrate that maximum yield in cereals are achievable with high level overexpression of rate-limiting enzymes in more than one tissue.

Online Early

The peer-reviewed and edited version of record published online before inclusion in an issue

Published online 30 November 2016

FP16078Stomatal behaviour under terminal drought affects post-anthesis water use in wheat

Renu Saradadevi, Helen Bramley, Jairo A. Palta and Kadambot H. M. Siddique
 

Terminal drought reduced grain yield in wheat by affecting grain filling. To expose the shallow part of the root system to soil dryness while the roots at depth have access to water, watering was provided only to the bottom 30 cm of the pot from anthesis. The wheat genotype that showed a higher degree of stomatal closure limited post-anthesis water uptake at depth. Grain yield was related to post-anthesis water use.


Plants adapt to environmental light conditions with the use of the sophisticated phytochrome system. In this work, polymorphism of its major component – phytochrome A– was investigated. With the use of transgenic Arabidopsis and fluorescence technique, it was shown that two molecular types of the photoreceptor differ by the state of phosphorylation and their existence accounts for its complex functions.

Published online 30 November 2016

FP16234Impact of fog drip versus fog immersion on the physiology of Bishop pine saplings

Sara A. Baguskas, Jennifer Y. King, Douglas T. Fischer, Carla M. D'Antonio and Christopher J. Still
 

Fog water is known to offset plant water stress during the dry season in Mediterranean ecosystems; however, the underlying mechanisms of fog water use and its impact on physiological function has yet to be elucidated for many species. We assessed the impact of fog drip and fog immersion on the physiological function of a drought-sensitive pine species restricted to the fog belt of coastal California. Fog drip to the soil is the primary mechanism by which fog water inputs relieve stress and enhance instantaneous carbon gain of Bishop pine saplings, although foliar absorption is also a viable mechanism by which Bishop pines use fog water. Our results are important for understanding how the carbon and water relations of foggy forests may be impacted by potential changes in the fog regime.

Published online 28 November 2016

FP16154Genotypic variation in soil water use and root distribution and their implications for drought tolerance in chickpea

Ramamoorthy Purushothaman, Lakshmanan Krishnamurthy, Hari D. Upadhyaya, Vincent Vadez and Rajeev K. Varshney
 

Knowledge on soil water use pattern is critical for adapting chickpea to drought. Drought reduced surface root distribution while enhancing the deeper ones Water use from 15 to 30 and 90 to 120 cm soil depths were critical for best adaptation.

Published online 24 November 2016

FP16123Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV

Tao Duan, Bangyou Zheng, Wei Guo, Seishi Ninomiya, Yan Guo and Scott C. Chapman
 

It is challenging to efficiently and accurately estimate ground cover, which is an important physiological trait affecting crop radiation capture, water-use efficiency and grain yield. Here we compared two methods to estimate plot-level ground cover for three species automatically from UAV captured images. The method is suitable for high throughput phenotyping for applications in agronomy, physiology and breeding for different crop species.


Growth is an issue of central importance in plant physiology and agriculture. Growing cells expand by generating an internal hydrostatic pressure – the turgor. A thorough revision of over 40 years of research suggests that turgor results from a steady-state between passive water uptake via aquaporins driven by an osmotic gradient (which is generally accepted) and by a secondary active water secretion, including a cotransport of water and solutes.

Published online 23 November 2016

FP16189Warming alters the positive impact of elevated CO2 concentration on cotton growth and physiology during soil water deficit

Katrina J. Broughton, Renee A. Smith, Remko A. Duursma, Daniel K. Y. Tan, Paxton Payton, Michael P. Bange and David T. Tissue
 

Alterations in climate factors such as rising CO2 concentration ([CO2]), warming and reduced precipitation may have significant impacts on plant physiology and growth. Cotton was grown in the glasshouse at two [CO2] treatments (CA, 400 µL L–1; CE, 640 µL L–1) and two temperature treatments (TA, 28°C?:17°C day?:?night; TE, 32°C?:?21°C day?:?night), and subjected to two progressive water deficit cycles, with a 5-day recovery period between the water deficit periods. CE may provide positive growth and physiological benefits to cotton under TA if sufficient water is available but CE will not mitigate the negative effects of rising temperature on cotton growth and physiology in future environments.

Published online 22 November 2016

FP16222The half-life of the cytochrome bf complex in leaves of pea plants after transfer from moderately-high growth light to low light

Hui Zhu, Ling-Da Zeng, Xiao-Ping Yi, Chang-Lian Peng, Wang-Feng Zhang and Wah Soon Chow
 

The cytochrome (cyt) bf complex content is the main factor limiting photosynthetic electron transport capacity, but the cyt bf life-time is not well characterised. We found that upon transferring high-light-grown pea plants to low light, the cyt f content decreased with a half-life of 1.7 days, even with the re-introduction of high light during part of the low-light photoperiod. It appears that mature leaves could not make new cyt bf complex, which was inevitably partially lost in low light.

Published online 14 November 2016

FP16112Osmotic adjustment of young sugar beets (Beta vulgaris) under progressive drought stress and subsequent rewatering assessed by metabolite analysis and infrared thermography

Rita Wedeking, Anne-Katrin Mahlein, Ulrike Steiner, Erich-Christian Oerke, Heiner E. Goldbach and Monika A. Wimmer
 

In this study we aimed to better understand the relations between the external phenotype of young sugar beets and corresponding physiological and metabolic processes under drought stress and rewatering, ultimately providing tools to improve phenotypic approaches for drought tolerance. Using physiological, biochemical and a non-destructive phenotyping method, distinct stress phases and differential speed of recovery for selected physiological and metabolic processes were distinguished. Combination of these methods might be used to speed up the selection of drought-adapted cultivars in breeding programs.

Published online 14 November 2016

FP16156The advantages of functional phenotyping in pre-field screening for drought-tolerant crops

Boaz Negin and Menachem Moshelion
 

Breeding for stress tolerant crops is a highly challenging task. In this review we suggest four key components to be considered in pre-field screens (phenotyping) for complex, quantitative, traits under drought conditions. Moreover, we emphasise the advantages in using non-imaging, physiology-based, high-throughput phenotyping systems and diagnostic models as a preferred way to understand and characterise plant response to stress conditions.

Published online 09 November 2016

FP16242Rapid changes in root HvPIP2;2 aquaporins abundance and ABA concentration are required to enhance root hydraulic conductivity and maintain leaf water potential in response to increased evaporative demand

Dmitry S. Veselov, Dmitry S. Veselov, Guzel V. Sharipova, Guzel V. Sharipova, Stanislav Yu. Veselov, Stanislav Yu. Veselov, Ian C. Dodd, Ian C. Dodd, Igor Ivanov, Igor Ivanov, Guzel R. Kudoyarova and Guzel R. Kudoyarova
 

The ABA-deficient barley mutant Az34 and wild type (WT) were exposed to air warming. Although transpiration rate of both genotypes increased, leaf water potential decreased in the mutant but was maintained in WT plants. Only WT plants showed increased root ABA accumulation, which increased root hydraulic conductivity and aquaporin abundance, which seems important in maintaining leaf hydration.

Published online 02 November 2016

FP16163Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring

Nicolas Virlet, Kasra Sabermanesh, Pouria Sadeghi-Tehran and Malcolm J. Hawkesford
 

The ability to dissect the genetic control of complex traits is limited by the ability to accurately monitor and measure plant performance. Here, a world first in automated high-throughput field robotic platforms is presented for the continual and detailed monitoring of plant growth. This platform provides detailed descriptions of canopy development across the entire lifecycle of the crop, with a high-degree of accuracy and reproducibility.

Published online 27 October 2016

FP16082Effects of drought stress on morphological, physiological and biochemical characteristics of wheat species differing in ploidy level

Jian Yong Wang, Neil C. Turner, Ying Xia Liu, Kadambot H. M. Siddique and You Cai Xiong
 

Modern polyploid wheat has diploid and tetraploid ancestors that may harbour beneficial drought resistance genes lost during domestication and subsequent breeding. We compared the morpho-physiological and biochemical responses to drought of eight accessions of wild and domesticated wheat differing in ploidy level, and show that modern polyploid wheat invests less biomass in roots and more in leaves and reproductive organs, particularly under drought.

Published online 24 October 2016

FP16128GrowScreen-PaGe, a non-invasive, high-throughput phenotyping system based on germination paper to quantify crop phenotypic diversity and plasticity of root traits under varying nutrient supply

Tania Gioia, Anna Galinski, Henning Lenz, Carmen Müller, Jonas Lentz, Kathrin Heinz, Christoph Briese, Alexander Putz, Fabio Fiorani, Michelle Watt, Ulrich Schurr and Kerstin A. Nagel
 

Non-invasive root phenotyping is challenging. We introduce GrowScreen-PaGe, a rapid, cost-effective and high-resolution method for non-invasive, high-throughput phenotyping based on flat germination paper for studying root system traits and growth dynamics of crop plants. We demonstrate that this platform can be used to estimate root traits that reliably capture heritable diversity between genotypes and species.

Published online 24 October 2016

FP16263Assessing the suitability of various screening methods as a proxy for drought tolerance in barley

Md. Hasanuzzaman, Lana Shabala, Tim J. Brodribb, Meixue Zhou and Sergey Shabala
 

In a search for a convenient and rapid screening method for drought tolerance, barley genotypes were evaluated for a range of physiological and agronomical measures. Leaf chlorophyll fluorescence Fv/Fm ratio and the relative root growth rate of polyethylene glycol-treated seedlings were found to be the most suitable proxies for quantifying drought tolerance.

Published online 20 October 2016

FP16180The seed-borne Southern bean mosaic virus hinders the early events of nodulation and growth in Rhizobium-inoculated Phaseolus vulgaris L.

Mariadaniela López, Nacira Muñoz, Hernan Ramiro Lascano and María Luisa Izaguirre-Mayoral
 

Seed-transmitted viruses are a major threat in tropical and subtropical fields, hindering the benefits of applying Rhizobium inoculants in legume crops. We developed an easy, 100% effective protocol to promote the infection of germinating seeds with a legume virus. This protocol will enable further research beyond our findings with Phaseolus vulgaris L. for improving cultural practices to reduce the incidence of viruses in tropical and subtropical legume crops.

Published online 20 October 2016

FP16165The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system

Norbert Kirchgessner, Frank Liebisch, Kang Yu, Johannes Pfeifer, Michael Friedli, Andreas Hund and Achim Walter
 

Crop phenotyping is a significant bottleneck of research in breeding and precision agriculture, which demands rapid data acquisition in the field. We established a cable-suspended phenotyping platform covering a field of 1 ha. The platform facilitates continuous analysis of several crops with multiple sensors throughout the year and provides reference data for mobile phenotyping platforms such as drones.

Published online 20 October 2016

FP16172Moderate to severe water limitation differentially affects the phenome and ionome of Arabidopsis

Lucia M. Acosta-Gamboa, Suxing Liu, Erin Langley, Zachary Campbell, Norma Castro-Guerrero, David Mendoza-Cozatl and Argelia Lorence
 

Water limitation is known to affect plant growth and yield. To begin dissecting time-dependent effects of water limitation in Arabidopsis, we combined high-throughput phenomics and ionomics. These two approaches allowed us to quantify the negative effects of water limitation at critical points during plant development.

Published online 20 October 2016

FP16127Observation of plant–pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements

Stefan Thomas, Mirwaes Wahabzada, Matheus Thomas Kuska, Uwe Rascher and Anne-Katrin Mahlein
 

Phenotyping is the most time consuming step in the process of breeding new plants for increased pathogen resistance: this could be improved through hyperspectral imaging. During experiments with different barley lines under pathogen pressure the novel technique of transmission based spectral imaging measurement was evaluated and compared with reflection based spectral imaging. The results of this study provide basic information about strengths and weaknesses of different hyperspectral measuring methods to be considered in future work.

Published online 12 October 2016

FP15289Aluminium-inhibited NO3 uptake is related to Al-increased H2O2 content and Al-decreased plasma membrane ATPase activity in the root tips of Al-sensitive black soybean

Dan Yang, Dongjie Chen, Ping Wang, Daihua Jiang, Huini Xu, Xiaolu Pang, Limei Chen, Yongxiong Yu and Kunzhi Li
 

The study on the effect of Al stress on the absorption of NO3 N in soybean could provide a scientific basis for N management in acid soil. The results showed that Al stress could significantly inhibit the absorption of NO3N in soybean; however, Mg and ascorbic acid could reduce the inhibition of NO3 N uptake by Al stress. The inhibition of nitrate uptake in soybean in acid soil is expected to be alleviated by applying Mg and ascorbic acid.


Specific physiological traits are considered reliable indicators of salinity tolerance of wheat (Triticum aestivum L.) cultivars. As an alternative, spectral sensing is sufficiently sensitive to differentiate cultivars for differences in salinity tolerance, with considerable potential for high-throughput screening of phenotypic traits associated with this tolerance.

Published online 05 October 2016

FP16210Use of infrared thermography for monitoring crassulacean acid metabolism

Bronwyn J. Barkla and Timothy Rhodes
 

Infrared thermography for monitoring changes in leaf temperature as a consequence of reduced transpiration due to daytime stomatal closure in crassulacean acid metabolism (CAM) plants provides a rapid, non-invasive and economically attractive alternative to conventional gas exchange measurements for detecting CAM. Here we demonstrate the use of infrared (IR) thermography in the facultative CAM plant Mesembryanthemum crystallinum and show how it can be used to detect CAM in previously unstudied species.

Published online 14 September 2016

FP16121Hyperspectral imaging reveals the effect of sugar beet quantitative trait loci on Cercospora leaf spot resistance

Marlene Leucker, Mirwaes Wahabzada, Kristian Kersting, Madlaina Peter, Werner Beyer, Ulrike Steiner, Anne-Katrin Mahlein and Erich-Christian Oerke
 

As crops are permanently threatened by pests and pathogens, breeding of resistant varieties is an important strategy to control these risks. During the breeding processes, an effective and reliable evaluation of promising candidates is necessary, but often difficult and laborious; therefore, a sensor-based method was used, revealing spatial and temporal differences in Cercospora leaf spot resistance of sugar beet lines with closely related genetic backgrounds. The method proved to be highly sensitive to quantitative differences in resistance and may improve resistance breeding.

Published online 26 August 2016

FP16167Approaches to three-dimensional reconstruction of plant shoot topology and geometry

Jonathon A. Gibbs, Michael Pound, Andrew P. French, Darren M. Wells, Erik Murchie and Tony Pridmore
 

The need for increased crop yields is becoming urgent as the amount of arable land available is reduced and environmental factors worsen, however, plant phenotyping has been identified as a key bottleneck in the process of improving crop yields. Here we review approaches to 3D shoot reconstruction to improve phenotyping using image-based methods. An automated system capable of producing three-dimensional (3D) models of plants would significantly aid phenotyping practice, increase accuracy and repeatability of measurements and potentially aid the process of improved crop yields.

Published online 05 August 2016

FP16117Micron-scale phenotyping quantification and three-dimensional microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning

Jianjun Du, Ying Zhang, Xinyu Guo, Liming Ma, Meng Shao, Xiaodi Pan and Chunjiang Zhao
 

Micro-scale phenotyping analysis of vascular bundles is valuable for phenotypic identification of germplasm resources. We developed a sample preparation protocol for micro-CT imaging of corn stalks, and designed an automatic image processing pipeline for phenotyping analysis of vascular bundles. These methods have potential to improve the throughput and quality of micro-scale phenotypic traits, and are expected to be useful in genetic and physiological studies to discover links between stalk anatomy and functions such as water transportation efficiency, mechanical properties.


The next step in wheat climate change adaptation research is to evaluate responses of individual cultivars to elevated CO2. This will require the evaluation of large numbers of genotypes, and for practical reasons, preliminary studies are most likely to be conducted in controlled environments with container-grown plants. However, this might create problems or reduce the ability to detecting true cultivar responses.

Published online 04 July 2016

FP16036Phenotyping oilseed rape growth-related traits and their responses to water deficit: the disturbing pot size effect

Anaëlle Dambreville, Mélanie Griolet, Gaëlle Rolland, Myriam Dauzat, Alexis Bédiée, Crispulo Balsera, Bertrand Muller, Denis Vile and Christine Granier
 

Plant phenotyping platforms allow high-throughput experiments, and facilitate the study of plant growth to precisely monitored watering conditions. This study describes the disturbing effect of pot size on oilseed rape responses to water deficit. Our results raise the awareness of the need to carefully consider the pot size when designing protocols of high-throughput phenotyping experiments.

Just Accepted

These articles have been peer reviewed and accepted for publication. They are still in production and have not been edited, so may differ from the final published form.

Most Read

The Most Read ranking is based on the number of downloads in the last 60 days from the CSIRO PUBLISHING website. Usage statistics are updated daily.

Submit Article

Use the online submission system to send us your manuscript.

Call for Papers

We are seeking contributions for Special Issues. More

Best Paper Award

Diep Ganguly has been awarded the ASPS-FPB Best Paper Award for 2015.

Advertisement