Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology

Functional Plant Biology

Functional Plant Biology

Functional Plant Biology publishes new and significant information on the functional biology of plants at all scales from the molecular through whole plant to community. Read more about the journalMore

Editor-in-Chief: Sergey Shabala

Current Issue

Functional Plant Biology

Volume 43 Number 11 2016

FP16135Salinity effects on chloroplast PSII performance in glycophytes and halophytes

William J. Percey, Andrew McMinn, Jayakumar Bose, Michael C. Breadmore, Rosanne M. Guijt and Sergey Shabala
pp. 1003-1015

This paper investigates effect of salinity stress and K+ nutrition on photosynthetic parameters of isolated chloroplasts and shows that chloroplasts’ ability to regulate ion transport across the envelope and thylakoid membranes play a critical role in leaf photosynthetic performance under salinity.

FP16120Potassium fluxes and reactive oxygen species production as potential indicators of salt tolerance in Cucumis sativus

Mirvat Redwan, Francesco Spinelli, Lucia Marti, Matthias Weiland, Emily Palm, Elisa Azzarello and Stefano Mancuso
pp. 1016-1027

Salt stress has a high impact on crop yield, with current global annual losses being around US$27 billion. Among horticulture crops, cucumber (Cucumis sativus) is considered a moderately salt-sensitive species. Here, we report a study on two cultivars of cucumber with different tolerance to salt. The ability of roots to retain K and produce reactive O species is important for salt tolerance screening and plant breeding programmes.

FP16114Proteomic responses in shoots of the facultative halophyte Aeluropus littoralis (Poaceae) under NaCl salt stress

Wassim Azri, Zouhaier Barhoumi, Farhat Chibani, Manel Borji, Mouna Bessrour and Ahmed Mliki
pp. 1028-1047

Very little is known about the adaptation mechanism of A. littoralis under saline conditions. In this study, we investigated salt tolerance mechanisms adopted by this halophyte. Proteomic analyses revealed that the reduction of proteins related to photosynthesis and induction of proteins involved in glycolysis activity and TCA cycle and energy metabolism could be the main mechanisms for salt tolerance in A. littoralis.

Dehydrin proteins play a key role in stress tolerance in plants. The aim of this work was to highlight the role of the different conserved domains of a wheat dehydrin (DHN-5) overexpressed in Arabidopsis transgenic plants. We showed that DHN-5 via its K-segments may play a role in the improvement of tolerance to abiotic and biotic stress. It remains to be seen the effect of the over-expressing of DHN-5 in the development of crops with multiple stress tolerances.

Plants exhibiting crassulacean acid metabolism are highly heat sensitive in the dark when malic acid has accumulated in cell vacuoles overnight. The present investigation on Clusia and Agave shows that light effectively eliminates the increased heat sensitivity seen at high acid levels. It is concluded that in the dark, heat-induced efflux of malic acid from vacuoles causes damage to leaf tissue, particularly to chloroplasts, whereas under illumination, damage is avoided by turnover of the acid during photosynthetic metabolism.

FP16068Genetic variation in Fe toxicity tolerance is associated with the regulation of translocation and chelation of iron along with antioxidant defence in shoots of rice

Ahmad Humayan Kabir, Most Champa Begum, Ariful Haque, Ruhul Amin, A. M. Swaraz, Syed Ali Haider, Nishit Kumar Paul and Mohammad Monzur Hossain
pp. 1070-1081

Iron toxicity is harmful to plants. The aim of this study was to characterise the mechanisms underlying differential Fe-toxicity tolerance in wheat. From our results we propose that Fe-toxicity tolerance in wheat is shoot based and is mainly associated with the regulation of translocation and chelation of Fe together with increased antioxidant defence in shoots.

FP16097Co-ordinated performance of leaf hydraulics and economics in 10 Chinese temperate tree species

Ying Jin, Chuankuan Wang, Zhenghu Zhou and Zhimin Li
pp. 1082-1090

Leaf trait correlations are important for understanding carbon–water–nutrient couplings in plant functional biology. We investigated leaf hydraulics and economic traits for 10 Chinese temperate tree species, and found a tight co-ordination between these two suits of traits. This co-ordinated performance plays an important role in determining plant ecological strategies and supports the ‘fast–slow’ leaf economics spectrum.

FP16003Molecular cloning and functional characterisation of the tomato E3 ubiquitin ligase SlBAH1 gene

Shu-Mei Zhou, Sai-Han Wang, Chao Lin, Yun-Zhi Song, Xin-Xin Zheng, Feng-Ming Song and Chang-Xiang Zhu
pp. 1091-1101

In this study we isolated the SlBAH1 gene from tomato. SlBAH1 possesses E3 ubiquitin ligase enzyme activity. SlBAH1 was localised in the nucleus, cytoplasm and plasma membrane. SlBAH1-silencing enhanced resistance to Botrytis cinerea.

Online Early

The peer-reviewed and edited version of record published online before inclusion in an issue

Published online 27 October 2016

FP16082Effects of drought stress on morphological, physiological and biochemical characteristics of wheat species differing in ploidy level

Jian Yong Wang, Neil C. Turner, Ying Xia Liu, Kadambot H. M. Siddique and You Cai Xiong

Modern polyploid wheat has diploid and tetraploid ancestors that may harbour beneficial drought resistance genes lost during domestication and subsequent breeding. We compared the morpho-physiological and biochemical responses to drought of eight accessions of wild and domesticated wheat differing in ploidy level, and show that modern polyploid wheat invests less biomass in roots and more in leaves and reproductive organs, particularly under drought.

Published online 24 October 2016

FP16128GrowScreen-PaGe, a non-invasive, high-throughput phenotyping system based on germination paper to quantify crop phenotypic diversity and plasticity of root traits under varying nutrient supply

Tania Gioia, Anna Galinski, Henning Lenz, Carmen Müller, Jonas Lentz, Kathrin Heinz, Christoph Briese, Alexander Putz, Fabio Fiorani, Michelle Watt, Ulrich Schurr and Kerstin A. Nagel

Non-invasive root phenotyping is challenging. We introduce GrowScreen-PaGe, a rapid, cost-effective and high-resolution method for non-invasive, high-throughput phenotyping based on flat germination paper for studying root system traits and growth dynamics of crop plants. We demonstrate that this platform can be used to estimate root traits that reliably capture heritable diversity between genotypes and species.

Published online 24 October 2016

FP16263Assessing the suitability of various screening methods as a proxy for drought tolerance in barley

Md. Hasanuzzaman, Lana Shabala, Tim J. Brodribb, Meixue Zhou and Sergey Shabala

In a search for a convenient and rapid screening method for drought tolerance, barley genotypes were evaluated for a range of physiological and agronomical measures. Leaf chlorophyll fluorescence Fv/Fm ratio and the relative root growth rate of polyethylene glycol-treated seedlings were found to be the most suitable proxies for quantifying drought tolerance.

Published online 20 October 2016

FP16180The seed-borne Southern bean mosaic virus hinders the early events of nodulation and growth in Rhizobium-inoculated Phaseolus vulgaris L.

Mariadaniela López, Nacira Muñoz, Hernan Ramiro Lascano and María Luisa Izaguirre-Mayoral

Seed-transmitted viruses are a major threat in tropical and subtropical fields, hindering the benefits of applying Rhizobium inoculants in legume crops. We developed an easy, 100% effective protocol to promote the infection of germinating seeds with a legume virus. This protocol will enable further research beyond our findings with Phaseolus vulgaris L. for improving cultural practices to reduce the incidence of viruses in tropical and subtropical legume crops.

Published online 20 October 2016

FP16127Observation of plant–pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements

Stefan Thomas, Mirwaes Wahabzada, Matheus Thomas Kuska, Uwe Rascher and Anne-Katrin Mahlein

Phenotyping is the most time consuming step in the process of breeding new plants for increased pathogen resistance: this could be improved through hyperspectral imaging. During experiments with different barley lines under pathogen pressure the novel technique of transmission based spectral imaging measurement was evaluated and compared with reflection based spectral imaging. The results of this study provide basic information about strengths and weaknesses of different hyperspectral measuring methods to be considered in future work.

Published online 20 October 2016

FP16172Moderate to severe water limitation differentially affects the phenome and ionome of Arabidopsis

Lucia M. Acosta-Gamboa, Suxing Liu, Erin Langley, Zachary Campbell, Norma Castro-Guerrero, David Mendoza-Cozatl and Argelia Lorence

Water limitation is known to affect plant growth and yield. To begin dissecting time-dependent effects of water limitation in Arabidopsis, we combined high-throughput phenomics and ionomics. These two approaches allowed us to quantify the negative effects of water limitation at critical points during plant development.

Published online 20 October 2016

FP16165The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system

Norbert Kirchgessner, Frank Liebisch, Kang Yu, Johannes Pfeifer, Michael Friedli, Andreas Hund and Achim Walter

Crop phenotyping is a significant bottleneck of research in breeding and precision agriculture, which demands rapid data acquisition in the field. We established a cable-suspended phenotyping platform covering a field of 1 ha. The platform facilitates continuous analysis of several crops with multiple sensors throughout the year and provides reference data for mobile phenotyping platforms such as drones.

Published online 12 October 2016

FP15289Aluminium-inhibited NO3 uptake is related to Al-increased H2O2 content and Al-decreased plasma membrane ATPase activity in the root tips of Al-sensitive black soybean

Dan Yang, Dongjie Chen, Ping Wang, Daihua Jiang, Huini Xu, Xiaolu Pang, Limei Chen, Yongxiong Yu and Kunzhi Li

The study on the effect of Al stress on the absorption of NO3 N in soybean could provide a scientific basis for N management in acid soil. The results showed that Al stress could significantly inhibit the absorption of NO3N in soybean; however, Mg and ascorbic acid could reduce the inhibition of NO3 N uptake by Al stress. The inhibition of nitrate uptake in soybean in acid soil is expected to be alleviated by applying Mg and ascorbic acid.

Published online 12 October 2016

FP16187Tissue tolerance: an essential but elusive trait for salt-tolerant crops

Rana Munns, Richard A. James, Matthew Gilliham, Timothy J. Flowers and Timothy D. Colmer

For a plant to persist in saline soil, leaves should accumulate sodium and chloride to high concentrations, thus allowing energy-efficient osmotic adjustment. Adverse effects of these ions must be avoided, a situation known as ‘tissue tolerance’. This viewpoint considers the concept of tissue tolerance and how to measure it, to identify useful genetic variation that can be harnessed for plant breeding.

Published online 12 October 2016

FP16138Responses of woody Cerrado species to rising atmospheric CO2 concentration and water stress: gains and losses

João Paulo Souza, Nayara M. J. Melo, Eduardo G. Pereira, Alessandro D. Halfeld, Ingrid N. Gomes and Carlos Henrique B. A. Prado

Native plant responses to climate change are a critical issue for global ecology and food security. We investigated the relationships among rising atmospheric CO2, soil water availability and the growth of woody Cerrado species in open-top chambers. We found that the isolated effects of elevated CO2 were positive but under water stress, the growth of woody Cerrado species was impaired. Our results, which are the first to consider the influence of rising CO2 on these plants, will aid in Cerrado ecology and management.

Published online 10 October 2016

FP16150Adaptation to and recovery from drought stress at vegetative stages in wheat (Triticum aestivum) cultivars

Muhammad Abid, Zhongwei Tian, Syed Tahir Ata-Ul-Karim, Feng Wang, Yang Liu, Rizwan Zahoor, Dong Jiang and Tingbo Dai

Intermittent drought and re-wetting events are common in agricultural systems. A study was conducted to evaluate the degree of morpho-physiological adaptations and recovery after re-watering in wheat during drought stress at different plant growth stages. The projected results indicated that genotypic variations in adaptability to and recovery from drought stress are indicators of drought tolerance and grain yield sustainability.

Specific physiological traits are considered reliable indicators of salinity tolerance of wheat (Triticum aestivum L.) cultivars. As an alternative, spectral sensing is sufficiently sensitive to differentiate cultivars for differences in salinity tolerance, with considerable potential for high-throughput screening of phenotypic traits associated with this tolerance.

Published online 05 October 2016

FP16210Use of infrared thermography for monitoring crassulacean acid metabolism

Bronwyn J. Barkla and Timothy Rhodes

Infrared thermography for monitoring changes in leaf temperature as a consequence of reduced transpiration due to daytime stomatal closure in crassulacean acid metabolism (CAM) plants provides a rapid, non-invasive and economically attractive alternative to conventional gas exchange measurements for detecting CAM. Here we demonstrate the use of infrared (IR) thermography in the facultative CAM plant Mesembryanthemum crystallinum and show how it can be used to detect CAM in previously unstudied species.

Published online 03 October 2016

FP16045Leaf trichomes and foliar chemistry mediate defence against glasshouse thrips; Heliothrips haemorrhoidalis (Bouché) in Rhododendron simsii

Alison S. Scott-Brown, Tom Gregory, Iain W. Farrell and Philip C. Stevenson

Plants rely on adaptive defence mechanisms that mitigate against herbivory and increase the chance of survival. This comes with energy costs as defined by optimal defence theory so ideally should be targeted or responsive. Thrips cause seasonal damage to a species of Rhododendron but the impact is limited by tissue specific accumulation of both invertebrate toxins and trichomes explaining, surprisingly for the first time, how Rhododendrons tolerate herbivory.

Cereal yield is limited by the rate of starch biosynthesis and previous experiments have focussed on increasing starch in leaves or seeds. This study demonstrates that increasing leaf and seed starch simultaneously by using tissue specific overexpression of AGPase enhances yield more than with leaf or seed starch alone. Our results demonstrate that maximum yield in cereals are achievable with high level overexpression of rate-limiting enzymes in more than one tissue.

Published online 14 September 2016

FP16121Hyperspectral imaging reveals the effect of sugar beet quantitative trait loci on Cercospora leaf spot resistance

Marlene Leucker, Mirwaes Wahabzada, Kristian Kersting, Madlaina Peter, Werner Beyer, Ulrike Steiner, Anne-Katrin Mahlein and Erich-Christian Oerke

As crops are permanently threatened by pests and pathogens, breeding of resistant varieties is an important strategy to control these risks. During the breeding processes, an effective and reliable evaluation of promising candidates is necessary, but often difficult and laborious; therefore, a sensor-based method was used, revealing spatial and temporal differences in Cercospora leaf spot resistance of sugar beet lines with closely related genetic backgrounds. The method proved to be highly sensitive to quantitative differences in resistance and may improve resistance breeding.

Published online 05 September 2016

FP16022Stress-induced changes in carbon allocation among metabolite pools influence isotope-based predictions of water use efficiency in Phaseolus vulgaris

Erin Lockhart, Birgit Wild, Andreas Richter, Kevin Simonin and Andrew Merchant

Understanding how crops respond to environmental stress will expand our capacity to improve production. We explore the physiological and chemical responses of Phaseolus vulgaris L. to different stresses, identifying changes in the abundance of protective metabolites. We identify shifts in C allocation among metabolite pools and, through measuring compound-specific isotope abundance, identify the potential for changes in biochemical fractionation that may impact predictions of intrinsic water use efficiency. Our findings indicate biochemical traits that could help improve strategies to develop crops that can withstand adverse conditions.

Published online 31 August 2016

FP16012Weak co-ordination between vein and stomatal densities in 105 angiosperm tree species along altitudinal gradients in Southwest China

Wan-Li Zhao, Ya-Jun Chen, Timothy J. Brodribb and Kun-Fang Cao

Co-ordination between leaf vein and stomatal densities is required to achieve maximum photosynthetic yield. In this work we tested the generality of this co-ordination and found a weak correlation between vein and stomatal densities across 105 angiosperm tree species across altitudes from 800 to 2600 m in South-west China. This reveals decoupled adaptation in leaf venation and stomatal characteristics along a large altitudinal gradient.

Published online 26 August 2016

FP16104Identification of an orthologous clade of peroxidases that respond to feeding by greenbugs (Schizaphis graminum) in C4 grasses

Erin D. Scully, Teresa Donze-Reiner, Haichuan Wang, Thomas E. Eickhoff, Frederick Baxendale, Paul Twigg, Frank Kovacs, Tiffany Heng-Moss, Scott E. Sattler and Gautam Sarath

The greenbug can cause significant economic damage to several cultivated grasses. Peroxidases are a class of plant enzymes that have been associated with resistance to aphids. An equivalent region of genomes of three cultivated grasses contained evolutionarily-related peroxidase genes that were induced in response to greenbug herbivory, potentially linking this genomic hotspot to insect resistance.

Published online 26 August 2016

FP16167Approaches to three-dimensional reconstruction of plant shoot topology and geometry

Jonathon A. Gibbs, Michael Pound, Andrew P. French, Darren M. Wells, Erik Murchie and Tony Pridmore

The need for increased crop yields is becoming urgent as the amount of arable land available is reduced and environmental factors worsen, however, plant phenotyping has been identified as a key bottleneck in the process of improving crop yields. Here we review approaches to 3D shoot reconstruction to improve phenotyping using image-based methods. An automated system capable of producing three-dimensional (3D) models of plants would significantly aid phenotyping practice, increase accuracy and repeatability of measurements and potentially aid the process of improved crop yields.

Published online 19 August 2016

FP15391Natural variation in primary root growth and K+ retention in roots of habanero pepper (Capsicum chinense) under salt stress

Emanuel Bojórquez-Quintal, Nancy Ruiz-Lau, Ana Velarde-Buendía, Ileana Echevarría-Machado, Igor Pottosin and Manuel Martínez-Estévez

In this work, we demonstrated the natural variation in mechanisms for protection against salt stress in pepper varieties. NaCl-induced K+ and H+ efflux in roots was also studied by ion-selective microelectrodes under application of pharmacological agents. Pharmacological analysis indicated that the NaCl-induced K+ leakage was mediated by TEA+-sensitive KOR channels but not by NSCC channels and we present evidence for participation of proline, and HAK K+ transporter for maintaining K+ homeostasis under salt stress.

Published online 05 August 2016

FP16117Micron-scale phenotyping quantification and three-dimensional microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning

Jianjun Du, Ying Zhang, Xinyu Guo, Liming Ma, Meng Shao, Xiaodi Pan and Chunjiang Zhao

Micro-scale phenotyping analysis of vascular bundles is valuable for phenotypic identification of germplasm resources. We developed a sample preparation protocol for micro-CT imaging of corn stalks, and designed an automatic image processing pipeline for phenotyping analysis of vascular bundles. These methods have potential to improve the throughput and quality of micro-scale phenotypic traits, and are expected to be useful in genetic and physiological studies to discover links between stalk anatomy and functions such as water transportation efficiency, mechanical properties.

The next step in wheat climate change adaptation research is to evaluate responses of individual cultivars to elevated CO2. This will require the evaluation of large numbers of genotypes, and for practical reasons, preliminary studies are most likely to be conducted in controlled environments with container-grown plants. However, this might create problems or reduce the ability to detecting true cultivar responses.

Published online 04 July 2016

FP16036Phenotyping oilseed rape growth-related traits and their responses to water deficit: the disturbing pot size effect

Anaëlle Dambreville, Mélanie Griolet, Gaëlle Rolland, Myriam Dauzat, Alexis Bédiée, Crispulo Balsera, Bertrand Muller, Denis Vile and Christine Granier

Plant phenotyping platforms allow high-throughput experiments, and facilitate the study of plant growth to precisely monitored watering conditions. This study describes the disturbing effect of pot size on oilseed rape responses to water deficit. Our results raise the awareness of the need to carefully consider the pot size when designing protocols of high-throughput phenotyping experiments.

Just Accepted

These articles have been peer reviewed and accepted for publication. They are still in production and have not been edited, so may differ from the final published form.

Most Read

The Most Read ranking is based on the number of downloads in the last 60 days from the CSIRO PUBLISHING website. Usage statistics are updated daily.

Submit Article

Use the online submission system to send us your manuscript.

Call for Papers

We are seeking contributions for Special Issues. More

Best Paper Award

Diep Ganguly has been awarded the ASPS-FPB Best Paper Award for 2015.