Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology

Functional Plant Biology

Functional Plant Biology

Functional Plant Biology publishes new and significant information on the functional biology of plants at all scales from the molecular through whole plant to community. Read more about the journalMore

Editor-in-Chief: Sergey Shabala

Current Issue

Functional Plant Biology

Volume 44 Number 4 2017

By sensing changes in the local environment, plants adapt their growth patterns to maximise reproductive success. This review summarises our understanding of how plants detect chemical compounds released into the soil during fire events. This field of research has led to the discovery of an evolutionarily conserved signalling system that has implications for agriculturally relevant aspects of plant development.

The plant pathogen Phytophthora cinnamomi poses a major threat to a wide range of host plants. This study examined resistance in Lomandra longifolia (an Australian native plant) and found high levels of resistance to infection, along with the identification of several resistant-related components. Understanding L. longifolia’s resistance to the pathogen may help develop strategies for protection of more susceptible species.

FP16272Evaluation of root porosity and radial oxygen loss of disomic addition lines of Hordeum marinum in wheat

Dennis Konnerup, A. l. Imran Malik, A. K. M. R. Islam and Timothy David Colmer
pp. 400-409

Hordeum marinum is a waterlogging-tolerant wild relative of wheat (Triticum aestivum) and has been hybridised with wheat to produce amphiploids containing the genomes from both species. We found that although an amphiploid had improved root aeration traits compared with the wheat parent, the addition lines containing chromosome pairs did not have these traits of greater root porosity or a barrier to radial O2 loss. Thus, these root aeration traits were not expressed in any of the six of the seven possible chromosome addition lines, hampering efforts to use H. marinum as a donor of waterlogging tolerance to wheat.

FP16299Vein density is independent of epidermal cell size in Arabidopsis mutants

Madeline R. Carins Murphy, Graham J. Dow, Gregory J. Jordan and Timothy J. Brodribb
pp. 410-418

It has been proposed that the densities at which veins and stomata are present in leaves are co-ordinated by epidermal cell expansion. However, we found that vein density is not causally linked to epidermal cell size. This suggests that adaptation favours synchronised changes to cell size in different leaf tissues to coordinate vein and stomatal density, and thus, maintain a balance between water supply and transpirational demand.

FP16239Transcriptome profiling of rice seedlings under cold stress

Luciano C. da Maia, Pablo R. B. Cadore, Leticia C. Benitez, Rodrigo Danielowski, Eugenia J. B. Braga, Paulo R. R. Fagundes, Ariano M. Magalhães and Antonio Costa de Oliveira
pp. 419-429

Sub-optimal environmental conditions for crops are called abiotic stress; cold is one of the main stresses for rice. In this study, the RNAseq technique was used to identify genes expressed in response to cold in rice germination. The results indicated that a large number of genes were expressed in the sensitive genotype and few genes in the tolerant genotype. We have identified possible genes that are responsible for cold tolerance in rice plants of the cold tolerant cultivar.

FP16258Nitrate increases ethylene production and aerenchyma formation in roots of lowland rice plants under water stress

Cuimin Gao, Lei Ding, Yingrui Li, Yupei Chen, Jingwen Zhu, Mian Gu, Yong Li, Guohua Xu, Qirong Shen and Shiwei Guo
pp. 430-442

It remains unclear how water stress affects ethylene production and aerenchyma formation in rice plant supply with different nitrogen forms. The results showed that nitrate nutrition increased ethylene production and aerenchyma formation in roots of lowland rice plants under water stress. We concluded that nitrogen source supply is involved in the regulation of ethylene biosynthesis and function, especially under water stress.

FP16206Defence mechanisms associated with mycorrhiza-induced resistance in wheat against powdery mildew

Ghalia Mustafa, Ngan Giang Khong, Benoît Tisserant, Béatrice Randoux, Joël Fontaine, Maryline Magnin-Robert, Philippe Reignault and Anissa Lounès-Hadj Sahraoui
pp. 443-454

Little is known about the biocontrol ability of the arbuscular mycorrhizal fungi (AMF) to protect plants against foliar fungal pathogens. We assessed the ability of Funneliformis mosseae to protect wheat against powdery mildew caused by Blumeria graminis f.sp. tritici. AMF treatment revealed a systemic resistance of wheat to B. graminis associated with a stimulation of plant defence responses and interpreted as mycorrhiza-induced resistance.

FP16360Malus domestica ADF1 severs actin filaments in growing pollen tubes

Qing Yang, ShengNan Wang, ChuanBao Wu, QiuLei Zhang, Yi Zhang, QiuJu Chen, Yang Li, Li Hao, Zhaoyu Gu, Wei Li and Tianzhong Li
pp. 455-463

In this work we cloned a new gene ADF1 that severs actin filaments in apple pollen tubes. The aim of the work is to give references to understand the function of ADF generally in vitro and in vivo and the main discovery is ADF severs actin filaments. Finally, we fit the original images into the software Photoshop 6.0 for bigger pictures and use software Image J to produce the video clips.

FP16383The inhibition of photosynthesis under water deficit conditions is more severe in flecked than uniform irradiance in rice (Oryza sativa) plants

Jiali Sun, Qiangqiang Zhang, Muhammad Adnan Tabassum, Miao Ye, Shaobing Peng and Yong Li
pp. 464-472

The effect of water deficit on photosynthesis in fluctuating irradiance is not well understood, although leaves within a canopy experience a highly variable light environment. This study was conducted by investigating steady-state and dynamic photosynthesis of two rice (Oryza sativa L.) cultivars grown under well-watered and water stress conditions. We found that the inhibition of photosynthesis under water deficit condition is more severe in flecked than steady-state irradiance.

Online Early

The peer-reviewed and edited version of record published online before inclusion in an issue

Published online 28 March 2017

FP15381Calcium improves apoplastic–cytosolic ion homeostasis in salt-stressed Vicia faba leaves

Sherif H. Morgan, Sylvia Lindberg, Pooja Jha Maity, Christoph-Martin Geilfus, Christoph Plieth and Karl-Hermann Mühling

This paper describes a new method to measure free Ca concentrations in plants’ extracellular matrix (the apoplast). Extra Ca supply during cultivation increases Ca concentration both in the apoplast and intracellularly, and acidifies the apoplastic pH, which improves ion homeostasis. This may be a further explanation for the favourable effect of Ca for cell expansion and plant growth under salinity.

Published online 28 March 2017

FP16422Why do plants lack sodium pumps and would they benefit from having one?

Jesper T. Pedersen and Michael Palmgren

In contrast to their ancestors, vascular plants do not have a Na+ pump. The lack of a Na+ pump might give a hint as to why vascular plants are so sensitive to salinity. In this minireview, we discuss the feasibility of introducing a Na+ pump to increase the salt tolerance of vascular plants.

Root growth is controlled by phytohormones, but what cellular processes are regulated and how it occurs is still an open question. Here it is shown that cytokinin affects root growth mainly through its effect on cell proliferation, and does not initiate the transition of cells to differentiation as previously thought. Cellular analysis performed could be applied for the analysis of how any plant hormone influences developmental processes in plant roots.

Pre-anthesis water-deficit stress causes detrimental effects on the production of crops such as durum wheat in rain-fed areas. In stress tolerant varieties, the regulation of microRNA160 and the mRNA that it targets, auxin response factors, are potentially associated with the unaffected leaf relative water content and chlorophyll content, and the co-ordinated control of stomatal aperture, which ultimately contribute to the maintenance of grain number and yield. Together, these findings suggest the importance of durum microRNA regulatory modules in water stress responses and provide useful information for improving stress tolerance in breeding.

Published online 24 March 2017

FP16283Cyclosis-mediated long distance communications of chloroplasts in giant cells of Characeae

Anna V. Komarova, Vladimir S. Sukhov and Alexander A. Bulychev

Intracellular communications in plant cells of large dimensions rely primarily on cytoplasmic streaming, because diffusion is too slow for the transport on mm-scale distances. Illumination of a small cell spot at a various distances from the point of chlorophyll fluorescence measurements revealed the wave-like propagation of the fluorescence response along the cell length. The results show that the photosynthetic function of immobile chloroplasts under constant light can be affected by long-distance transmission of a photosynthetically active metabolite from the remote cell parts.

Published online 23 March 2017

FP16401Leaf gas film retention during submergence of 14 cultivars of wheat (Triticum aestivum)

Dennis Konnerup, Anders Winkel, Max Herzog and Ole Pedersen

Some terrestrial plants, including wheat (Triticum aestivum), possess superhydrophobic leaf surfaces that retain a thin gas film when submerged. We tested gas film retention time of 14 different wheat cultivars and found that wheat could retain the gas films for a minimum of 2 days. We suggest that leaf gas film is a relevant trait to use as a selection criterion to improve the flood tolerance of crops that become temporarily submerged.

Understanding the molecular mechanisms of plant development constitutes an important field of investigations in the current era of plant biology research. Nitric oxide signalling regulates a variety of biochemical processes in plants. Present review provides an in-depth analysis of our current understanding on the subject, particularly with reference to plant growth under stress conditions.

Published online 22 March 2017

FP16384Melatonin in plant signalling and behaviour

Lauren A. E. Erland, Praveen K. Saxena and Susan J. Murch

Melatonin is an important hormone and signalling molecule in all forms of life including humans, plants and bacteria. Recent plant physiology and genomic experiments have described the redirection of plant growth and metabolism, and demonstrated a diversity of genes involved in response to melatonin, however, the exact metabolic cascades that translate melatonin signals into physiological responses is not fully understood. This review provides an overview of melatonin mediated signalling manifested as behaviours and its roles in basic and industrial research.

Published online 22 March 2017

FP16368Effect of FLOWERING LOCUS C on seed germination depends on dormancy

Logan Blair, Gabriela Auge and Kathleen Donohue

The timing of seed germination and flowering influences the fitness of plants in seasonal environments. Two major flowering-time genes – FLOWERING LOCUS C and FRIGIDA – were shown to influence the propensity of seeds to germinate, both immediately after dispersal and after dormancy breakage and re-induction; these genetic differences in dormancy were manifest as genetic differences in temperature-dependent germination. Therefore, flowering and germination share some genetic basis, potentially coordinating or constraining how plants respond to seasonal cues across their life cycle.

Published online 16 March 2017

FP16262Overgrowth (Della) mutants of wheat: development, growth and yield of intragenic suppressors of the Rht-B1c dwarfing gene

Adinda P. Derkx, Carol A. Harding, Asemeh Miraghazadeh and Peter M. Chandler

The increased wheat yields that occurred during the Green Revolution were made possible by incorporating semidwarfing alleles of the wheat Della gene into new wheat varieties. These alleles are still in widespread use in current wheat varieties, but we have now isolated many new mutants of this gene and characterised their effects on growth, grain dormancy and yield. The results provide insight into regulation of growth by the DELLA protein and indicate particular alleles of potential value in wheat breeding.

Published online 16 March 2017

FP16326Sunpatiens compact hot coral: memristors in flowers

Alexander G. Volkov and Eunice K. Nyasani

Memristors, or resistors with memory, exist in vivo as components of plasma membranes in plants, fruits, roots and seeds. Authors found memristors in an androecium, spur, petals and pedicel in Sunpatiens flowers. The discovery of memristors in Sunpatiens (Impatiens spp.) creates a new direction in the modelling and understanding of electrophysiological phenomena and memory elements in flowers.

Published online 14 March 2017

FP16348Phloem fibres as motors of gravitropic behaviour of flax plants: level of transcriptome

Oleg Gorshkov, Natalia Mokshina, Nadezda Ibragimova, Marina Ageeva, Natalia Gogoleva and Tatyana Gorshkova

Plant fibres with a tertiary cell wall (G-layer) may function as plant ‘muscles’. Large-scale transcriptome profiling of isolated flax phloem fibres permitted to identify the major players and regulatory elements that operate during graviresponce specifically in the fibres of the pulling stem side. The suggested mechanisms of phloem fibre involvement in tropisms may considerably renew the concept of herbaceous plant behaviour upon gravistimulation.

Published online 14 March 2017

FP16318Plant ion channels and transporters in herbivory-induced signalling

Shuitian Luo, Xiao Zhang, Jinfei Wang, Chunyang Jiao, Yingying Chen and Yingbai Shen

Clarifying herbivory-induced plant cellular signalling is a critical step to push the research of plant-herbivore interaction forward. We review the role of ion channels/transporters in modulating herbivory-induced early signalling events and rapid systemic signal transmission in plants. This work provides a comprehensive source of information about plant defensive strategies upon attack.

Published online 14 March 2017

FP16292Studies of cytokinin receptor–phosphotransmitter interaction provide evidences for the initiation of cytokinin signalling in the endoplasmic reticulum

Sergey N. Lomin, Yulia A. Myakushina, Dmitry V. Arkhipov, Olga G. Leonova, Vladimir I. Popenko, Thomas Schmülling and Georgy A. Romanov

Cytokinin is an important plant hormone and its mode of action has been extensively studied; however, to date, the subcellular localisation of cytokinin perception and signal transduction remains a matter of debate. This study describes cytokinin receptor–phosphotransmitter interaction and its subcellular localisation in living plant cells and it provides several experimental evidences for receptor activity at the endoplasmic reticulum (ER) membrane. It is concluded that intracellular cytokinins within the ER lumen may play an important role in cytokinin signalling, at least in some cell types.

Published online 07 March 2017

FP16377Cell differentiation in nitrogen-fixing nodules hosting symbiosomes

Anna V. Tsyganova, Anna B. Kitaeva and Viktor E. Tsyganov

Rhizobium bacteria, which live within the root nodules of legumes, allow plants to capture nitrogen gas from the atmosphere and use it for their own growth. Central to this symbiosis is an intracellular structure, called the symbiosome, in which nitrogen-fixing bacterial cells exchange components with the host cells that harbor them. Recent research on the differentiation of symbiosomes and of the infected cells that accommodate them has helped to decipher some general molecular mechanisms of cell differentiation.

Published online 03 March 2017

FP16342Parameters of electrical signals and photosynthetic responses induced by them in pea seedlings depend on the nature of stimulus

Vladimir Vodeneev, Maxim Mudrilov, Elena Akinchits, Irina Balalaeva and Vladimir Sukhov

Plants, like animals, produce electrical signals in response to various external influences. In this study we raised a question whether the electrical signals transmit information about the nature of the stimulus, and found out that different stimuli induce signals of varied parameters. The obtained results explain how plants adapt to changing environment.

Published online 03 March 2017

FP16280In vivo inhibition of polyamine oxidase by a spermine analogue, MDL-72527, in tomato exposed to sublethal and lethal salt stress

Zoltán Takács, Péter Poór, Ágnes Szepesi and Irma Tari

The accumulation of free polyamines (PAs), the terminal oxidation of PAs and the production of H2O2 by diamine oxidases (DAOs) and polyamine oxidases (PAOs), and the expression of selective DAO and PAO genes, depends on the intensity of salt stress in tomato. H2O2 generated by DAO and PAO in cell walls under lethal salt stress induces cell death caused by irreversible loss of electrolytes from tissues. MDL-72527, a PAO inhibitor, impeded PAO-generated H2O2 production and H2O2-induced nitric oxide accumulation but increased electrolyte leakage from tissues, and thus does not increase salt tolerance.

Published online 28 February 2017

FP16380The role of ion disequilibrium in induction of root cell death and autophagy by environmental stresses

Vadim Demidchik, Elena V. Tyutereva and Olga V. Voitsekhovskaja

Environmental stresses are main causes for low agricultural productivity. At the cellular level, stresses induce generation of reactive oxygen species (ROS), ion disequilibrium, autophagy and programmed cell death (PCD). Here we propose that these processes interact and that ROS and ion disequilibrium are triggers of autophagy and PCD. Overall, presented data contribute to understanding plant stress physiology.

It is now accepted that there is continuous carbohydrate unloading and reloading along the entire phloem pathway linking sources and sinks. In what way this affects solute concentration and hydrostatic pressure along the pathway is unknown, and at present this is inaccessible to measurement. Hence modelling of this flow is the only route available. In this paper we use a detailed mechanistic model, able to incorporate lateral flows, to determine the effect of phloem pathway unloading/reloading. With adequate reloading, our calculations indicate that this has no overall effect on equilibrium flows, but has a large effect if unloading is not matched by adequate reloading.

Transient elevation of cytosolic Ca2+, also referred as a Ca2+signal, is as central phenomenon of plant signalling. Plants evolved sophisticated systems to initiate, amplify and terminate Ca2+ signals. Structure and properties of these systems, including Ca2+-permeable ion channels, Ca2+-ATPases, Ca2+/H+ exchangers and ‘ROS-Ca2+ hub’ are discussed here. They provide a fine-tuned mechanism for encoding diverse external and internal stimuli.

Published online 13 February 2017

FP16347Spatial distribution of organelles in leaf cells and soybean root nodules revealed by focused ion beam-scanning electron microscopy

Brandon C. Reagan, Paul J. -Y. Kim, Preston D. Perry, John R. Dunlap and Tessa M. Burch-Smith

Focussed ion bean scanning electron microscopy (FIB-SEM) is a technique that can be used to generate 3D renderings of cells and their contents. Although FIB-SEM has been regularly used to investigate animal cells and tissues, it has rarely been deployed to study plant structures. Here we demonstrate that FIB-SEM can easily be used to study plant samples and have discovered previously unknown arrangements of organelles and membranes in those samples.

Published online 03 February 2017

FP16322Formation mechanisms of superoxide radical and hydrogen peroxide in chloroplasts, and factors determining the signalling by hydrogen peroxide

Boris N. Ivanov, Maria M. Borisova-Mubarakshina and Marina A. Kozuleva

Photosynthetic electron transport chain is not only source of ATP and NADPH for photosynthesis; it is a sensor, informing adaptation systems of plant about environmental changes. An important transmitter of this information is hydrogen peroxide whose mechanisms of formation are presented, laying special emphasis on the formation outside and within thylakoid membrane. It is discussed, that the formation place can ensure definite signal about the specific environmental change.

Published online 11 January 2017

FP16321Arabidopsis thaliana phytaspase: identification and peculiar properties

Nina V. Chichkova, Raisa A. Galiullina, Larisa V. Mochalova, Svetlana V. Trusova, Zulfazli M. Sobri, Patrick Gallois and Andrey B. Vartapetian

Although plant proteases of the phytaspase family are important contributors to stress-induced plant cell death, phytaspase of a classical model plant Arabidopsis thaliana has escaped identification thus far. We identified the Arabidopsis phytaspase-encoding gene and characterised the recombinant enzyme. Substrate specificity and properties of the Arabidopsis phytaspase display both important similarities with and distinctions from the already characterised phytaspases.

Published online 20 December 2016

FP16337cGMP signalling in plants: from enigma to main stream

Jean-Charles Isner and Frans J. M. Maathuis

Cyclic GMP (cGMP) signalling in plants is crucial for many physiological processes. Recent analytical and genomic developments now allow detailed studies into the biochemistry and physiological role of cGMP in plants, and the latest findings are reviewed in this article.

Published online 16 December 2016

FP16338Two-pore cation (TPC) channel: not a shorthanded one

Igor Pottosin and Oxana Dobrovinskaya

Large conductance SV/TPC1 channels are ubiquitously and abundantly expressed in the vacuolar membranes of higher plants. They are unique established Ca2+-permeable channels in vacuoles, but their activity is strongly negatively controlled, so that they were believed to be inactive or to act only locally. Recent evidence suggests the key role of SV/TPC1 channels in the long-distance Ca2+ signalling.

Plants adapt to environmental light conditions with the use of the sophisticated phytochrome system. In this work, polymorphism of its major component – phytochrome A– was investigated. With the use of transgenic Arabidopsis and fluorescence technique, it was shown that two molecular types of the photoreceptor differ by the state of phosphorylation and their existence accounts for its complex functions.

Published online 09 November 2016

FP16242Rapid changes in root HvPIP2;2 aquaporins abundance and ABA concentration are required to enhance root hydraulic conductivity and maintain leaf water potential in response to increased evaporative demand

Dmitry S. Veselov, Dmitry S. Veselov, Guzel V. Sharipova, Guzel V. Sharipova, Stanislav Yu. Veselov, Stanislav Yu. Veselov, Ian C. Dodd, Ian C. Dodd, Igor Ivanov, Igor Ivanov, Guzel R. Kudoyarova and Guzel R. Kudoyarova

The ABA-deficient barley mutant Az34 and wild type (WT) were exposed to air warming. Although transpiration rate of both genotypes increased, leaf water potential decreased in the mutant but was maintained in WT plants. Only WT plants showed increased root ABA accumulation, which increased root hydraulic conductivity and aquaporin abundance, which seems important in maintaining leaf hydration.

Just Accepted

These articles have been peer reviewed and accepted for publication. They are still in production and have not been edited, so may differ from the final published form.

Most Read

The Most Read ranking is based on the number of downloads in the last 60 days from the CSIRO PUBLISHING website. Usage statistics are updated daily.

Submit Article

Use the online submission system to send us your manuscript.

Call for Papers

We are seeking contributions for Special Issues. More