CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 29(10)

Sustained downregulation of photosystem II in mistletoes during winter depression of photosynthesis

Shizue Matsubara, Adam M. Gilmore, Marilyn C. Ball, Jan M. Anderson and C. Barry Osmond

Functional Plant Biology 29(10) 1157 - 1169
Published: 18 October 2002

Abstract

Cold acclimation by sustained downregulation of PSII was studied in intact leaves of an Australian mistletoe Amyema miquelii (Lehm. ex Miq.) Tiegh. and its host Eucalyptus. The trends were followed from autumn to spring on leaves that had developed in summer and were exposed to different microclimates with progress of the seasons. In sun leaves of mistletoe, efficiency of excitation energy transfer from light-harvesting pigments to Chl a molecules in PSII core complexes was markedly reduced in winter. Concomitantly, a band in 77K fluorescence emission spectra emerged at 715 nm, in the same way as the cold-hard band found in overwintering snow gum seedlings (Gilmore and Ball 2000, Proceedings of the National Academy of Sciences USA 97, 11 098–11 101). Further, a distinct band, which presumably involves Chl-b-containing antennae complexes, appeared at 705 nm in –2°C fluorescence emission spectra with decreasing intensity of the PSII band. Much shorter PSII fluorescence lifetimes measured in sun leaves of mistletoe that were exhibiting sustained downregulation of PSII indicated enhanced thermal dissipation of excitation energy. Winter acclimation symptoms of the photosynthetic apparatus were more striking in mistletoe sun leaves compared with eucalypt sun leaves. Because the light and temperature environments of sun leaves are similar for the parasite and host, we primarily attribute the enhanced light-acclimation symptoms to the limited photosynthetic capacity of A. miquelii in winter.



Full text doi:10.1071/FP02014

© CSIRO 2002

blank image
Subscriber Login
Username:
Password:  

 
PDF (352 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015