CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant function and evolutionary biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 30(6)

Extension of a Farquhar model for limitations of leaf photosynthesis induced by light environment, phenology and leaf age in grapevines (Vitis vinifera L. cvv. White Riesling and Zinfandel)

Hans R. Schultz

Functional Plant Biology 30(6) 673 - 687
Published: 25 June 2003

Abstract

Measurements of gas exchange and stomatal conductance were made on potted and field-grown grapevines (Vitis vinifera L.) on leaves from different light environments (sun and shade) at different phenological stages during the season to parameterise the Farquhar model. The model parameters for Rubisco activity (Vcmax), maximum electron transport rate (Jmax), and triose-phosphate utilisation (TPU) were estimated on the basis of a large data set (n = 105) of CO2 assimilation (A) versus internal CO2 pressure (Ci) curves. Leaf age was described with the leaf plastochron index (LPI). Stomatal coupling to photosynthesis was modelled with the Ball–Woodrow–Berry empirical model of stomatal conductance. Mature shade leaves had 35–40% lower values of Vcmax, Jmax and TPU than sun leaves. The difference between leaf types decreased at the end of the season. The ratio Jmax / Vcmax and values of day respiration (Rd) and CO2 compensation point in the absence of mitochondrial respiration (Γ*) varied little during the season and were independent of LPI. Validation of the model with independent diurnal data sets of measurements of gas exchange and stomatal conductance at ambient CO2 concentrations for three days between June and October, covering a large range of environmental conditions, showed good agreement between measured and simulated values.

Keywords: gas exchange, leaf age, light environment, modelling, phenology, stomatal conductance, Vitis vinifera.



Full text doi:10.1071/FP02146

© CSIRO 2003

blank image
Subscriber Login
Username:
Password:  

 
PDF (395 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2016