CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant function and evolutionary biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 30(9)

Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation

Chih-Wen Yu, Terence M. Murphy and Chin-Ho Lin

Functional Plant Biology 30(9) 955 - 963
Published: 17 September 2003


Transient oxidative shock induced by pretreatment of leaves with H2O2 effectively increased chilling tolerance in mung bean and Phalaenopsis. Seedlings of the chilling-tolerant (V3327) cultivar of mung bean (Vigna radiata L.) were employed to study the mechanism of H2O2-induced chilling tolerance. Pretreatment with 200 mM H2O2 increased survival rates of seedlings chilled at 4°C for 36 h from 30% to 70%. The same treatment also lowered the electrolyte leakage from 86% to 21%. Time-course analysis immediately after the treatment demonstrated that exogenous application of H2O2 did not alter the endogenous H2O2 level of the plants. This observation suggests that the primary receptor for the exogenous H2O2 is localized on the leaf surface or in some other way isolated from the endogenous H2O2 pool. Oxidative shock inhibited the induction of the antioxidant enzymes, ascorbate peroxidase and catalase; however, it substantially increased glutathione content both under chilling and control conditions. Combined pretreatment of mung bean plants with abscisic acid and H2O2 showed no synergistic effect on glutathione content and decreased survival rate relative to treatment with either compound alone. These results suggest that the H2O2-induced chilling tolerance in these plants might be mediated by an elevation of glutathione content and is independent of the ABA mechanism of chilling protection.

Keywords: abscisic acid, ascorbate peroxidase, catalase, glutathione, hydrogen peroxide, mung bean (Vigna radiata L.).

Full text doi:10.1071/FP03091

© CSIRO 2003

blank image
Subscriber Login

PDF (100 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016