CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 31(1)

The influence of nitrogen supply on antioxidant enzymes in plant roots

Leonardo Oliveira Medici, Ricardo Antunes Azevedo, Richard John Smith and Peter John Lea

Functional Plant Biology 31(1) 1 - 9
Published: 09 January 2004

Abstract

Plants of Zea mays L., Hordeum vulgare L. and Arabidopsis thaliana (L.) Heynh. were grown at different concentrations of nitrogen, as NH4NO3, and the antioxidant enzyme activities and quantities in the roots, were studied. Maize plants were grown at 1 and 10 mM N for 32 d after germination and their roots were analysed by native PAGE for the isoenzymic profiles of glutathione reductase (GR; EC 1.6.4.2), catalase (CAT; EC 1.11.1.6) and superoxide dismutase (SOD; EC 1.15.1.1) and by spectrophotometric assays for total activity of CAT and GR. Barley and A. thaliana plants were grown at five N concentrations (0.25, 0.5, 1, 10 and 20 mM) for 27 and 26 d, respectively, and the isoenzymic profile of the three enzymes were analysed in their roots. The number of GR isoforms in the three plant species was increased at high N supply compared with low N. In addition, the CAT and GR activities detected in the roots were increased in plants grown at higher N. The increase in activity and number of bands of GR at high N in the roots of all three plants studied was not accompanied by a change in activity or the number of SOD isoforms. The possibility that the application of high N promotes the formation of reactive oxygen species by stimulating an increased rate of growth is discussed.

Keywords: Arabidopsis thaliana, barley, catalase, glutathione reductase, maize, nitrogen, roots, superoxide dismutase.



Full text doi:10.1071/FP03130

© CSIRO 2004

blank image
Subscriber Login
Username:
Password:  

 
PDF (187 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014