CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 31(1)

Structural changes in acclimated and unacclimated leaves during freezing and thawing

Marilyn C. Ball, Martin J. Canny, Chen X. Huang and Roger D. Heady

Functional Plant Biology 31(1) 29 - 40
Published: 09 January 2004

Abstract

Freeze-induced damage to leaf tissues was studied at different states of acclimation to low temperatures in snow gum, Eucalyptus pauciflora Sieber ex Sprengel. Intact, attached leaves of plants grown under glasshouse or field conditions were frozen at natural rates (frost-freezing) and thawed under laboratory conditions. Leaves were cryo-fixed unfrozen, during frost-freezing or after thawing for observation in a cryo-scanning electron microscope. Frost-freezing in unacclimated tissues caused irreversible tissue damage consistent with tissue death. Intracellular ice formed in the cambium and phloem, killing the cells and leaving persistent gaps between xylem and phloem. Many other cells were damaged by frost-freeze-induced dehydration and failed to resorb water from thawed extracellular ice, leaving substantial amounts of liquid water in intercellular spaces. In contrast, acclimated leaves showed reversible tissue displacements consistent with leaf survival. In these leaves during freezing, massive extracellular ice formed in specific expansion zones within the midvein. On thawing, water was resorbed by living cells, restoring the original tissue shapes. Possible evolutionary significance of these expansion zones is discussed. Acclimated leaves showed no evidence of intracellular freezing, nor tissue lesions caused by extracellular ice. While the observations accord with current views of freeze-sensitivity and tolerance, cryo-microscopy revealed diverse responses in different tissue types.

Keywords: cryo-SEM, Eucalyptus pauciflora, evergreen, extracellular freezing, freeze tolerance, frost, intracellular freezing, snow gum.



Full text doi:10.1071/FP03164

© CSIRO 2004

blank image
Subscriber Login
Username:
Password:  

 
PDF (1.7 MB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015