CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 32(10)

The balance between RuBP carboxylation and RuBP regeneration: a mechanism underlying the interspecific variation in acclimation of photosynthesis to seasonal change in temperature

Yusuke Onoda A B D, Kouki Hikosaka A, Tadaki Hirose A C

A Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578 Japan.
B Current address: Department of Plant Ecology, Utrecht University, PO Box 800.84 3508 TB Utrecht, The Netherlands.
C Department of International Agriculture Development, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502 Japan.
D Corresponding author. Email: Y.Onoda@bio.uu.nl
 
PDF (206 KB) $25
 Export Citation
 Print
  


Abstract

The ratio of the capacities of ribulose-1,5-bisphosphate (RuBP) regeneration to RuBP carboxylation (Jmax / Vcmax) (measured at a common temperature) increases in some species when they are grown at lower temperatures, but does not increase in other species. To investigate the mechanism of interspecific difference in the response of Jmax / Vcmax to growth temperature, we analysed the temperature dependence of Vcmax and Jmax in Polygonum cuspidatum and Fagus crenata with the Arrhenius function. P. cuspidatum had a higher ratio of Jmax / Vcmax in spring and autumn than in summer, while F. crenata did not show such change. The two species had a similar activation energy for Vcmax (EaV) across seasons, but P. cuspidatum had a higher activation energy for Jmax (EaJ) than F. crenata. Reconstruction of the temperature response curve of photosynthesis showed that plants with an inherently higher EaJ / EaV (P. cuspidatum) had photosynthetic rates that were limited by RuBP regeneration at low temperatures and limited by RuBP carboxylation at high temperatures, while plants with an inherently lower EaJ / EaV (F. crenata) had photosynthetic rates that were limited solely by RuBP carboxylation over the range of temperatures. These results indicate that the increase in Jmax / Vcmax at low growth temperatures relieved the limitation of RuBP regeneration on the photosynthetic rate in P. cuspidatum, but that such change in Jmax / Vcmax would not improve the photosynthetic rate in F. crenata. We suggest that whether or not the Jmax / Vcmax ratio changes with growth temperature is attributable to interspecific differences in EaJ / EaV between species.

Keywords: activation energy, interspecific variation, Jmax, temperature acclimation, Vcmax.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014