CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |         Contents Vol 32(9)

Primary root growth: a biophysical model of auxin-related control

Andrés Chavarría-Krauser A B C, Willi Jäger B, Ulrich Schurr A

A ICG-III (Phytosphere), Research Center Jülich, 52425 Jülich, Germany.
B Institute of Applied Mathematics, University of Heidelberg, INF 294, 69120 Heidelberg, Germany.
C Corresponding author. Email: a.chavarria@fz-juelich.de
PDF (330 KB) $25
 Export Citation


Plant hormones control many aspects of plant development and play an important role in root growth. Many plant reactions, such as gravitropism and hydrotropism, rely on growth as a driving motor and hormones as signals. Thus, modelling the effects of hormones on expanding root tips is an essential step in understanding plant roots. Here we achieve a connection between root growth and hormone distribution by extending a model of root tip growth, which describes the tip as a string of dividing and expanding cells. In contrast to a former model, a biophysical growth equation relates the cell wall extensibility, the osmotic potential and the yield threshold to the relative growth rate. This equation is used in combination with a refined hormone model including active auxin transport. The model assumes that the wall extensibility is determined by the concentration of a wall enzyme, whose production and degradation are assumed to be controlled by auxin and cytokinin. Investigation of the effects of auxin on the relative growth rate distribution thus becomes possible. Solving the equations numerically allows us to test the reaction of the model to changes in auxin production. Results are validated with measurements found in literature.

Keywords: auxin, gravitropism, hormone, model, root growth.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014