CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant function and evolutionary biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 32(8)

Root architectural tradeoffs for water and phosphorus acquisition

Melissa D. Ho A, Juan Carlos Rosas B, Kathleen M. Brown A C, Jonathan P. Lynch A C D

A Intercollege Program in Plant Physiology, Pennsylvania State University, University Park, PA 16802 USA.
B Programa de Investigaciones en Frijol, Zamorano-EAP, P.O. Box 93, Tegucigalpa, Honduras.
C Department of Horticulture, Pennsylvania State University, University Park, PA 16802 USA.
D Corresponding author. Email: JPL4@psu.edu
 
PDF (212 KB) $25
 Export Citation
 Print
  


Abstract

Root architectural traits that increase topsoil foraging are advantageous for phosphorus acquisition but may incur tradeoffs for the acquisition of deep soil resources such as water. To examine this relationship, common bean genotypes contrasting for rooting depth were grown in the field and in the greenhouse with phosphorus stress, water stress and combined phosphorus and water stress. In the greenhouse, water and phosphorus availability were vertically stratified to approximate field conditions, with higher phosphorus in the upper layer and more moisture in the bottom layer. Under phosphorus stress, shallow-rooted genotypes grew best, whereas under drought stress, deep-rooted genotypes grew best. In the combined stress treatment, the best genotype in the greenhouse had a dimorphic root system that permitted vigorous rooting throughout the soil profile. In the field, shallow-rooted genotypes surpassed deep-rooted genotypes under combined stress. This may reflect the importance of early vegetative growth in terminal drought environments. Our results support the hypothesis that root architectural tradeoffs exist for multiple resource acquisition, particularly when resources are differentially localised in the soil profile. Architectural plasticity and root dimorphism achieved through complementary growth of distinct root classes may be important means to optimise acquisition of multiple soil resources.

Keywords: drought, functional tradeoffs, multiple resource acquisition, Phaseolus vulgaris (common bean), phosphorus, root architecture.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2016