CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 32(11)

How does temperature affect C and N allocation to the seeds during the seed-filling period in pea? Effect on seed nitrogen concentration

Annabelle Larmure A C, Christophe Salon B, Nathalie G. Munier-Jolain B

A ENESAD, Département Agronomie et Environnement, 26 bd Dr Petitjean, BP 87999, 21079 Dijon cedex, France.
B INRA, Unité de Génétique et d’Ecophysiologie des Légumineuses, 17 rue Sully, BP 86510, 21065 Dijon cedex, France.
C Corresponding author. Email: a.larmure@enesad.fr
 
PDF (178 KB) $25
 Export Citation
 Print
  


Abstract

The effect of moderate temperature on seed N concentration during the seed-filling period was evaluated in pea (Pisum sativum L.) kept in growth cabinets and the relation between plant assimilate availability and the variation of seed N concentration with temperature was investigated. Seed N concentration of pea was significantly lowered when temperature during the seed-filling period decreased from a day / night temperature of 25 / 20°C to 15 / 10°C. Our results demonstrate that during the seed-filling period mechanisms linked with assimilate availability can modify seed N accumulation rate and / or seed-filling duration between 25 / 20°C and 15 / 10°C. At the lower temperature (15 / 10°C), an increased C availability resulting from an enhanced carbon fixation per degree-day allowed new competing vegetative sinks to grow as pea is an indeterminate plant. Consequently N availability to filling seeds was reduced. Because the rate of seed N accumulation per degree-day mainly depends on N availability to filling seeds, the rate of seed N accumulation was lower at the low temperature of our study (15 / 10°C) than at 25 / 20°C while seed growth rate per degree-day remains unaffected, consequently seed N concentration was reduced. Concomitantly, the increased C availability at the lower temperature prolonged the duration of the seed-filling period.

Keywords: Pisum sativum L., plant C and N assimilate availability, seed filling, seed N concentration, temperature.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014