CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 33(5)

Novel aspects of cyanogenesis in Eucalyptus camphora subsp. humeana

Elizabeth H. Neilson A, Jason Q. D. Goodger A B, Ian E. Woodrow A

A School of Botany, The University of Melbourne, Parkville, Vic. 3010, Australia.
B Corresponding author. Email: jgoodger@unimelb.edu.au
C This paper originates from a presentation at ECOFIZZ 2005, North Stradbroke Island, Queensland, Australia, November 2005.
 
PDF (180 KB) $25
 Export Citation
 Print
  


Abstract

Cyanogenesis is the release of cyanide from certain organisms upon tissue disruption. Tissue disruption, such as that caused by folivory, brings cyanogenic glycosides into contact with catabolic enzymes and toxic HCN is subsequently released. The process provides a measure of defence against generalist herbivores. Within the genus Eucalyptus, several species have been identified as cyanogenic and all of these store cyanide exclusively in the form of the cyanogenic glycoside prunasin. Here we report for the first time cyanogenesis in Eucalyptus camphora subsp. humeana L.A.S. Johnson & K.D. Hill. We found that foliage contains at least five different cyanogenic glycosides, three of which were purified and identified (prunasin, sambunigrin and amygdalin). Two natural populations of E. camphora trees were screened for cyanogenesis, and quantitative polymorphism was measured at both sites. Trees varied in their capacity for cyanogenesis from 0.014 to 0.543 mg CN g–1 DW in one population and from 0.011 to 0.371 mg CN g–1 DW in the other. A progeny trial, testing both cyanogenesis and carbon-based defence (namely total phenolics and condensed tannins), was performed with seed sourced from two cyanogenic, open-pollinated maternal trees. Interestingly, the seedlings exhibited markedly lower levels of cyanogenesis and condensed tannins than the adult population, with some individuals completely lacking one or both of the chemical defences. Total phenolic concentrations, however, were significantly higher in the seedlings than in the parental population from which the seed was sourced. Eucalyptus camphora is relatively unique among cyanogenic trees having multiple foliar cyanogenic glycosides and an apparently marked ontogenetic regulation of cyanogenic capacity.

Keywords: cyanogenesis, cyanogenic glycoside, defence, eucalypt, phenolics, prunasin.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014