CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 34(4)

Vacuolar acidity, protein profile, and crystal composition of epidermal bladder cells of the halophyte Mesembryanthemum crystallinum

Yingtzy Jou A, Ya-Ling Wang A, Hungchen Emilie Yen A B

A Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
B Corresponding author. Email: heyen@dragon.nchu.edu.tw
C This paper originates from an International Symposium in Memory of Vincent R. Franceschi, Washington State University, Pullman, Washington, USA, June 2006.
 
PDF (940 KB) $25
 Export Citation
 Print
  


Abstract

The halophyte Mesembryanthemum crytallinum L. (ice plant) is marked by giant epidermal bladder cells (EBC). The differentiation of pavement cells into EBC occurs at an early developmental stage. EBC occupy most of the surface area in the aerial parts of salt-stressed mature ice plants. A large vacuolar reservoir for ion and water storage plays an important role in salinity adaptation. To monitor the acidity of the vacuole at different developmental stages of EBC, peels from the abaxial surface were stained with a pH-sensitive dye, neutral red (NR). Presence of both NR-stained (acidic) and NR-unstained (neutral) EBC were found at the juvenile stage in ice plants. Continuous exposure to illumination decreased the acidity of the NR-stained cells. The EBC protein profile illustrated the prominent co-existence of highly acidic and basic proteins in these specialised cells. Major proteins that accumulate in EBC are involved in photosynthesis, sodium compartmentalisation, and defence. Numerous raphide crystals were found in well fertilised ice plants. Salt-stressed cells exhibited changes in the surface charge and element composition of raphide crystals. A disappearance of potassium in the high-salt grown crystals suggests that these crystals might serve as a potassium reservoir to maintain the Na+/K+ homeostasis in this halophyte.

Keywords: cysteine proteinase (EC 3.4.22.-), malate accumulation, raphide crystal, salt stress.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014