CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 34(9)

Resistance to radial CO2 diffusion contributes to between-tree variation in CO2 efflux of Populus deltoides stems

Kathy Steppe A C, An Saveyn A, Mary Anne McGuire B, Raoul Lemeur A, Robert O. Teskey B

A Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
B Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.
C Corresponding author. Email: kathy.steppe@UGent.be
 
PDF (300 KB) $25
 Export Citation
 Print
  


Abstract

Rates of CO2 efflux of stems and branches are highly variable among and within trees and across stands. Scaling factors have only partially succeeded in accounting for the observed variations. In this study, the resistance to radial CO2 diffusion was quantified for tree stems of an eastern cottonwood (Populus deltoides Bartr. ex Marsh.) clone by direct manipulation of the CO2 concentration ([CO2]) of xylem sap under controlled conditions. Tree-specific linear relationships between rates of stem CO2 efflux (JO) and xylem [CO2] were found. The resistance to radial CO2 diffusion differed 6-fold among the trees and influenced the balance between the amount of CO2 retained in the xylem v. that which diffused to the atmosphere. Therefore, we hypothesised that variability in the resistance to radial CO2 diffusion might be an overlooked cause for the inconsistencies and large variations in woody tissue CO2 efflux. It was found that transition from light to dark conditions caused a rapid increase in JO and xylem [CO2], both in manipulated trees and in an intact tree with no sap manipulation. This resulted in an increased resistance to radial CO2 diffusion during the dark, at least for trees with smaller daytime resistances. Stem diameter changes measured in the intact tree supported the idea that higher actual respiration rates occurred at night owing to higher metabolism in relation to an improved water status and higher turgor pressure.

Keywords: carbon dioxide, clone, permeability, sap velocity, stem diameter changes, stem respiration.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014