CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 35(7)

Alternative oxidase: an inter-kingdom perspective on the function and regulation of this broadly distributed ‘cyanide-resistant’ terminal oxidase

Allison E. McDonald

Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building, London, Ontario N6A 5B7, Canada. Email: amcdon27@uwo.ca
 Full Text
 PDF (1.4 MB)
 Export Citation


Alternative oxidase (AOX) is a terminal quinol oxidase located in the respiratory electron transport chain that catalyses the oxidation of quinol and the reduction of oxygen to water. However, unlike the cytochrome c oxidase respiratory pathway, the AOX pathway moves fewer protons across the inner mitochondrial membrane to generate a proton motive force that can be used to synthesise ATP. The energy passed to AOX is dissipated as heat. This appears to be very wasteful from an energetic perspective and it is likely that AOX fulfils some physiological function(s) that makes up for its apparent energetic shortcomings. An examination of the known taxonomic distribution of AOX and the specific organisms in which AOX has been studied has been used to explore themes pertaining to AOX function and regulation. A comparative approach was used to examine AOX function as it relates to the biochemical function of the enzyme as a quinol oxidase and associated topics, such as enzyme structure, catalysis and transcriptional expression and post-translational regulation. Hypotheses that have been put forward about the physiological function(s) of AOX were explored in light of some recent discoveries made with regard to species that contain AOX. Fruitful areas of research for the AOX community in the future have been highlighted.

Keywords: electron transport chain, endosymbiosis, mitochondrial respiration, reactive oxygen species, stress response, sulfide.

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015