CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 35(7)

Photoprotection of PSII in Hawaiian lobeliads from diverse light environments

Rebecca A. Montgomery A D, Guillermo Goldstein B, Thomas J. Givnish C

A Department of Forest Resources, University of Minnesota, Saint Paul, MN 55108, USA.
B Department of Biology, University of Miami, Miami, FL 33124, USA.
C Department of Botany, University of Wisconsin, Madison, WI 53706, USA.
D Corresponding author. Email: rebeccam@umn.edu
PDF (237 KB) $25
 Export Citation


Excess irradiance can reduce the quantum yield of photosynthesis via photoprotective energy dissipation, inactivation or downregulation of PSII. We examined variation in photoprotection as part of a study of adaptive radiation in photosynthetic light responses by Hawaiian lobeliads. We measured the maximum efficiency of PSII (Fv/Fm) and recovery of Fv/Fm after high light stress in field populations of 11 lobeliad species and in four species growing under common-garden greenhouse conditions. Species showed no difference in Fv/Fm (0.82 ± 0.02 (mean ± s.e.)) or in their ability to recover from light stress under field conditions. Average recovery was 74 ± 1.4% within 1 h of removal of the stress suggesting that all species maintain the ability to recover from high light stress, at least in the short-term. In contrast, the results from the common-garden indicate that long-term exposure to high irradiance and associated higher temperatures can cause a sustained reduction in PSII function. Species showed decreased Fv/Fm and percentage recovery as treatment irradiance increased. Fv/Fm and percentage recovery were positively related to native habitat PFD across species, suggesting that there has been a diversification in high light tolerance, with species from sunnier environments better able to avoid sustained declines in PSII function.

Keywords: adaptive radiation, chlorophyll fluorescence, common garden, non-photochemical quenching, photochemical reflectance index, xanthophyll-cycle pigments.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015