Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Copper in plants: acquisition, transport and interactions

Inmaculada Yruela
+ Author Affiliations
- Author Affiliations

Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Montañana, 1005, 50059 Zaragoza, Spain. Email: yruela@eead.csic.es

Functional Plant Biology 36(5) 409-430 https://doi.org/10.1071/FP08288
Submitted: 5 November 2008  Accepted: 25 February 2009   Published: 6 May 2009

Abstract

Copper is an essential metal for plants. It plays key roles in photosynthetic and respiratory electron transport chains, in ethylene sensing, cell wall metabolism, oxidative stress protection and biogenesis of molybdenum cofactor. Thus, a deficiency in the copper supply can alter essential functions in plant metabolism. However, copper has traditionally been used in agriculture as an antifungal agent, and it is also extensively released into the environment by human activities that often cause environmental pollution. Accordingly, excess copper is present in certain regions and environments, and exposure to such can be potentially toxic to plants, causing phytotoxicity by the formation of reactive oxygen radicals that damage cells, or by the interaction with proteins impairing key cellular processes, inactivating enzymes and disturbing protein structure. Plants have a complex network of metal trafficking pathways in order to appropriately regulate copper homeostasis in response to environmental copper level variations. Such strategies must prevent accumulation of the metal in the freely reactive form (metal detoxification pathways) and ensure proper delivery of this element to target metalloproteins. The mechanisms involved in the acquisition and the distribution of copper have not been clearly defined, although emerging data in last decade, mainly obtained on copper uptake, and both intra- and intercellular distribution, as well as on long-distance transport, are contributing to the understanding of copper homeostasis in plants and the response to copper stress. This review gives an overview of the current understanding of main features concerning copper function, acquisition and trafficking network as well as interactions between copper and other elements.

Additional keywords: deficiency, regulation, response, trafficking network, toxicity.


Acknowledgements

This work was supported by Ministry of Education and Science (BFU2005-07422-C02-01) and the Aragón Government (GC E33 DGA programme).


References


Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. Journal of Biological Chemistry 283, 15932–15945.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Abdel-Ghany SE, Burkhead JL, Gogolin KA, Andrés-Colás N, Bodecker JR, Puig S, Peñarrubia L, Pilon M (2005a) AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Letters 579, 2307–2312.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Abdel-Ghany SE, Müller-Moulé P, Niyogi KK, Pilon M, Shikanai T (2005b) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. The Plant Cell 17, 1233–1251.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Aller SG, Unger VM (2006) Projection structure of the human copper transporter CTR1 at 6-Å resolution reveals a compact trimer with a novel channel-like architecture. Proceedings of the National Academy of Sciences of the United States of America 103, 3627–3632.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Aller SG, Eng ET, De Feo CJ, Unger VM (2004) Eukaryotic CTR copper uptake transporters require two faces of the third transmembrane domain for helix packing, oligomerization, and function. Journal of Biological Chemistry 279, 53435–53441.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Alonso JM, Hirayama T, Roamn G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress response in Arabidopsis. Science 284, 2148–2152.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Andrés-Colás N, Sancenón V, Rodríguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Peñarrubia L (2006) The Arabidopsis heavy metal P-type ATPasa HMA5 interacts with metallochaperones and functions in copper detoxification of roots. The Plant Journal 45, 225–236.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Argüello JM (2003) Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. Journal of Membrane Biology 195, 93–108.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Argüello JM, González-Guerrero M (2008) Cu+-ATPases brake system. Structure 16, 833–834.
Crossref | PubMed |
open url image1

Argüello JM, Eren E, González-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. Biometals 20, 233–248.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiology 126, 696–706.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Baker DE , Senef JP (1995) Copper. In ‘Heavy metals in soils’. (Ed. BJ Alloway) pp. 179–205. (Blackie Academic and Professional: London)

Balandin T, Castresana C (2002) AtCOX17, an Arabidopsis homolog of the yeast copper chaperone COX17. Plant Physiology 129, 1852–1857.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Barón M, Arellano JB, López-Gorgé J (1995) Copper and photosystem II: a controversial relationship. Physiologia Plantarum 94, 174–180.
Crossref | GoogleScholarGoogle Scholar | open url image1

Barón Ayala M, López-Gorgé J, Lachica M, Sadmann G (1992) Changes in carotenoids and fatty acids in photosysyem II of Cu-deficient pea plants. Physiologia Plantarum 84, 1–5.
Crossref | GoogleScholarGoogle Scholar | open url image1

Barr R, Crane FL (1976) Organization of electron transport in photosystem II of spinach chloroplasts according to chelator inhibition sites. Plant Physiology 57, 450–453.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Baszynski T, Krupa Z (1995) Some aspects of heavy metal toxicity towards photosynthetic apparatus-direct an indirect effects on light and dark reactions. Acta Physiologiae Plantarum 17, 177–191. open url image1

Baszynski T, Ruszkowska M, Król M, Tukendorf A, Wolinska D (1978) The effect of copper deficiency on the photosynthetic apparatus of higher plants. Zeitschrift fur Pflanzenphysiologie 89, 207–216.
CAS |
open url image1

Baszynski T, Tukendorf A, Ruszkowska M, Skórzynska E, Maksymiec W (1988) Characteristics of the photosynthetic apparatus of copper non-tolerant spinach exposed to excess copper. Journal of Plant Physiology 132, 708–713.
CAS |
open url image1

Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiology 132, 618–628.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Belouchi A, Cellier M, Kwan T, Saini HS, Leroux G, Gros P (1995) The macrophage-specific membrane protein Nramp controlling natural resistance to infections in mice has homologues expressed in the root system of plants. Plant Molecular Biology 29, 1181–1196.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Belouchi A, Kwan T, Gros P (1997) Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Molecular Biology 33, 1085–1092.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bernal M (2006) Mecanismos de tolerancia al exceso de cobre en suspensiones celulares de soja. Caracterización del transportador de cobre HMA8 PhD Thesis. Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Cientificas (CSIC), Zaragoza, Spain. Available at http://hdl.handle.net/10261/2873

Bernal M, Ramiro MV, Cases R, Picorel R, Yruela I (2006a) Excess copper effect on growth, chloroplast ultrastructure, oxygen-evolution activity and chlorophyll fluorescence in Glycine max cell suspensions. Physiologia Plantarum 127, 312–325.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Bernal M, Sánchez-Testillano P, Risueño MC, Yruela I (2006b) Excess copper induces structural changes in cultured photosynthetic soybean cells. Functional Plant Biology 33, 1001–1012.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Bernal M, Cases R, Picorel R, Yruela I (2007a) Foliar and root Cu supply affect differently Fe and Zn uptake and photosynthetic activity in soybean plants. Environmental and Experimental Botany 60, 145–150.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Bernal M, Sánchez-Testillano PS, Alfonso M, Risueño MC, Picorel R, Yruela I (2007b) Identification and subcellular localization of the soybean copper P1B-ATPase GmHMA8 transporter. Journal of Structural Biology 158, 46–58.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bertrand M, Poirier I (2005) Photosynthetic organisms and excess of metals. Photosynthetica 43, 345–353.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Birkenbihl RP, Jach G, Saedler H, Huijser P (2005) Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains. Journal of Molecular Biology 352, 585–596.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bona E, Marsano F, Cavaletto M, Berta G (2007) Proteomic characterization of copper stress response in Cannabis sativa roots. Proteomics 7, 1121–1130.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Brun LA, Maillet J, Hinsinger P, Pépin M (2001) Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environmental Pollution 111, 293–302.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bueno P, Varela J, Giménez-Gallego G, del Rio LA (1995) Peroxisomal copper, zinc superoxide dismutase: characterization of the isoenzyme from watermelon cotyledons. Plant Physiology 108, 1151–1160.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Burda K, Kruk J, Strzałka K, Schimd GH (2002) Stimulation of oxygen evolution in photosystem II by copper. Zeitschrift für Naturforschung. Section C-A Journal of Biosciences 57c, 853–857. open url image1

Burkhead JL, Abdel-Ghany SE, Morrill JM, Pilon-Smits E, Pilon M (2003) The Arabidopsis thaliana CUTA gene encodes an evolutionary conserved copper binding chloroplast protein. The Plant Journal 34, 856–867.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Carrillo-González R, Simünek J, Sauvé S, Adriano D (2006) Mechanisms and pathways of trace element mobility in soils. Advances in Agronomy 91, 113–180. open url image1

Chaignon V, Di Malta D, Hinsinger P (2002) Fe-deficiency increases Cu acquisition by wheat cropped in a Cu-contaminated vineyard soil. New Phytologist 154, 121–130.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Chaignon V, Sanchez-Neira I, Hermann P, Jaillard B, Hinsinger P (2003) Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vinegrowing area. Environmental Pollution 123, 229–238.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Chen YF, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. Journal of Biological Chemistry 277, 19861–19866.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Chen Y, Shi J, Tian G, Zheng S, Lin Q (2004) Fe deficiency induces Cu uptake and accumulation in Commelina communis. Plant Science 166, 1371–1377.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Chen-Chou W, Rice WJ, Stokes DL (2008) Structure of a copper pump suggests a regulatory role for its metal-binding domain. Structure 16, 976–985.
Crossref | PubMed |
open url image1

Chiou T (2007) The role of microRNAs in sensing nutrient stress. Plant, Cell & Environment 30, 323–332.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Chu CC, Lee WC, Guo WY, Pan SM, Chen LJ, Li HM, Jinn TL (2005) A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiology 139, 425–436.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ciscato M, Valcke R, van Loven K, Clijsters H, Navari-Izzo F (1997) Effects of in vivo copper treatment on the photosynthetic apparatus of two Triticum durum cultivars with different stress sensitivity. Physiologia Plantarum 100, 901–908.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology 53, 159–182.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Cobbett CS, Hussain D, Haydon MJ (2003) Structural and functional relationships between type 1B heavy metal transporting P-type ATPases in Arabidopsis. New Phytologist 159, 315–321.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Colangelo EP, Guerinot ML (2006) Put metal to petal: metal uptake and transport throughout plants. Current Opinion in Plant Biology 9, 322–330.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Company P, González-Bosch C (2003) Identification of a copper chaperone from tomato fruits infected with Botrytis cinerea by differential display. Biochemical and Biophysical Research Communications 304, 825–830.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Cornu JY, Staunton S, Hinsinger P (2007) Copper concentration in plants and in the rizhosphere as influenced by the iron status of tomato (Lycopersicon esculentum L.). Plant and Soil 292, 63–77.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of Nramp 1 from Arabidopsis thaliana in iron transport. The Biochemical Journal 347, 749–755.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409, 346–349.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany 103, 1–11.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

De Vos CHR, Schat H, De Waal MAM, Voojis R, Ernst WHO (1991) Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiologia Plantarum 82, 523–528.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

De Vos CHR, Vonk MJ, Voojis R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiology 98, 853–858.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

DiDonato RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis yellow stripe- like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. The Plant Journal 39, 403–414.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Dietz K-J , Baier M , Krämer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In ‘Heavy metal stress in plants: from molecules to ecosystems’. (Eds MNV Prasad, J Hagemeyer) pp. 73–97. (Springer-Verlag: Berlin)

Drazkiewicz M, Skórzynska-Polit E, Krupa Z (2003) Response of the ascorbate-glutathione cycle to excess copper in Arabidopsis thaliana (L.). Plant Science 164, 195–202.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Droppa M, Masojidek J, Rózsa Z, Wolak A, Horváth LI, Farkas T, Horváth G (1987) Characteristics of Cu deficiency-induced inhibition of photosynthetic electron transport in spinach chloroplasts. Biochimica et Biophysica Acta 891, 75–84.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Eisses JF, Kaplan JH (2002) Molecular characterization of hCTR1, the human copper uptake protein. Journal of Biological Chemistry 277, 29162–29171.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Eriksson M, Moseley JL, Tottey S, Del Campo JA, Quinn J, Kim Y, Merchant S (2004) Genetic dissection of nutritional copper signaling in Chlamydomonas distinguishes regulatory and target genes. Genetics 168, 795–807.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Fernandes JC, Henriques FS (1991) Biochemical, physiological and structural effects of excess copper on plants. Botanical Review 57, 246–273.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fox TC, Guerinot ML (1998) Molecular biology of cation transport in plants. Annual Review of Plant Physiology 49, 669–696.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annual Review of Plant Physiology 29, 511–566.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Franklin N, Stauber JL, Lim RP, Petocz P (2002) Toxicity of metal mixtures to a tropical fresh-water alga (Chlorella sp.). The effect of interactions between copper, cadmium and zinc on metal cell binding and uptake. Environmental Toxicology and Chemistry 21, 2412–2422.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Fraústo da Silva JJR , Williams RJP (2001) ‘The biological chemistry of the elements.’ 2nd edn. (Clarenton Press: Oxford)

Friedland AJ (1990) The movement of metals through soils and ecosystems. In ‘Heavy metal tolerance in plants: evolutionary aspects’. (Ed. AJ Shaw) pp. 7–37. (CRC Press Inc.: Boca Raton, FL)

Gao W, Xiao S, Li H-Y, Tsao S-W, Chye M-L (2009) Arabdopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6. New Phytologist 181, 89–102.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat J-F, Lebrun M, Mari S (2007) TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. The Plant Journal 49, 1–15.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

González-Guerrero M, Argüello JM (2008) Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proceedings of the National Academy of Sciences of the United States of America 105, 5992–5997.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology 32, 481–494.
Crossref | GoogleScholarGoogle Scholar | open url image1

Green MR (1991) Biochemical mechanisms of constitutive and regulated pre-mRNA splicing. Annual Review of Cell Biology 7, 559–599.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America 95, 7220–7224.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Guo Y, Smith K, Lee J, Thiele DJ, Petris MJ (2004) Identification of methionine-rich clusters that regulate copper-stimulated endocytosis of the human Ctr1 copper transporter. Journal of Biological Chemistry 279, 17428–17433.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Guo W-Y, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiology 146, 1697–1706.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Gupta M, Cuypers A, Vangronsveld J, Clijsters H (1999) Copper affects the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiologia Plantarum 106, 262–267.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53, 1–11.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. The Biochemical Journal 219, 1–14.
CAS | PubMed |
open url image1

Harris ED (2000) Cellular copper transport and metabolism. Annual Review of Nutrition 20, 291–310.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Haydon MJ, Cobbett CS (2007) A novel major facilitator superfamily protein at the tonoplast influences Zn tolerance and accumulation in Arabidopsis thaliana. Plant Physiology 143, 1705–1719.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Henriques FS (1989) Effects of copper deficiency on the photosynthetic apparatus of sugar beet (Beta vulgaris L.). Journal of Plant Physiology 135, 453–458.
CAS |
open url image1

Herbik A, Bölling C, Buckhout TJ (2002) The involvement of a multicopper oxidase in iron uptake by the green algae Chlamydomonas reinhardtii. Plant Physiology 130, 2039–2048.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Himelblau E, Amasino RM (2000) Delivering copper within plant cells. Current Opinion in Plant Biology 3, 205–210.
CAS | PubMed |
open url image1

Himelblau E, Mira H, Lin SJ, Culotta VC, Peñarrubia L, Amasino RM (1998) Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiology 117, 1227–1234.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hinsinger P , Courchesne F (2008) Mobility and bioavailability of heavy metals and metalloids at soil–root interface. In ‘Biophysico-chemical processes of heavy metals and metalloids in soil environments, Vol. 1’. (Eds A Violante, PM Huang, GM Gadd) (Wiley-IUPAC Series Biophysico-Chemical Processes in Environmental Systems: Chichester, UK)

Hirayama T, Alonso JM (2000) Ethylene captures a metal! Metal ions are involved in ethylene perception and signal transduction. Plant & Cell Physiology 41, 548–555.
CAS | PubMed |
open url image1

Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) Responsive-to antagonistst1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97, 383–393.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Huffman DL, O’Halloran TV (2001) Function, structure, and mechanism of intracellular copper trafficking proteins. Annual Review of Biochemistry 70, 677–701.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiology 136, 3276–3283.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Jones JB (1998) ‘Plant nutrition manual.’ (CRC Press Inc.: Boca Raton, FL)

Kabata-Pendias A , Pendias H (2001) ‘Trace elements in soil and plants.’ (CRC Press Inc.: Boca Raton, FL)

Kaiser BN, Moreau S, Castelli J, Thomson R, Lambert A, Bogliolo S, Puppo A, Day DA (2003) The soybean NRAMP homologue, GmDMT1 is a symbiotic divalent metal transporter capable of ferrous iron transport. The Plant Journal 35, 295–304.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kampfenkel K, Kushinr S, Babychuk E, Inzé D, van Montagu M (1995) Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. Journal of Biological Chemistry 270, 28479–28486.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kanematsu S, Asada K (1989) CuZn-superoxide dismutase in rice: occurrence of an active, monomeric enzyme and two types of isoenzymes in leaf and non-photosynthetic tissues. Plant & Cell Physiology 30, 381–391.
CAS |
open url image1

Kazan K (2003) Alterantive splicing and proteome diversity in plants: the tip of iceberg has just emerged. Trends in Plant Science 8, 468–471.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Keinämen SI, Hassinen VH, Kärenlampi SO, Tervahauta AI (2007) Isolation of genes up-regulated by copper in a copper-tolerant birch (Betula pendula) clone. Tree Physiology 27, 1243–1252.
PubMed |
open url image1

Kernodle SP, Scandalios JG (2001) Structural organization, regulation, and expression of the chloroplastic superoxide dismutase Sod1 gene in maize. Archives of Biochemistry and Biophysics 391, 137–147.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kieselbach T, Hagman Ǻ, Andersson B, Schröder WP (1998) The thylakoid lumen of the chloroplasts: isolation and characterization. Journal of Biological Chemistry 273, 6710–6716.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kishinami I, Widholm JM (1987) Characterization of Cu and Zn resistant Nicotiana plumbaginifolia suspension cultures. Plant & Cell Physiology 28, 203–210.
CAS |
open url image1

Kitagishi K , Yamane I (Eds) (1981) ‘Heavy metal pollution in soils of Japan.’ (Japan Science Society Press: Tokyo)

Klomp AE, Juijn JA, van der Gun LT, van den Berg IE, Berger R, Klomp LW (2003) The N-terminus of the human copper transporter 1 (hCTR1) is localized extracellularly, and interacts with itself. The Biochemical Journal 370, 881–889.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kobayashi Y, Kuroda K, Kimura K, Southron-Francis JL, Furuzawa A, Kimura K, Iuchi S, Kobayashi M, Taylor GJ, Koyama H (2008) Amino acid polymorphisms in strictly conserved domains of a P-type ATPase HMA5 are involved in the mechanism of copper tolerance variation in Arabidopsis. Plant Physiology 148, 969–980.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kochian LV (1991) Mechanisms of micronutrient uptake and translocation in plants. In ‘Micronutrients in agriculture’. (Eds JJ Mortvedt, FR Cox, LM Shuman, RM Welch) pp. 229–296. (Soil Science Society of America: Madison, WI)

Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. The Plant Journal 39, 415–424.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Krämer U , Clemens S (2006) Functions and homeostasis of zinc, copper, and nickel in plants. In ‘Molecular biology of metal homeostasis and detoxification from microbes to man’. (Eds M Tamás, E Martinoia) pp. 214–272. (Springer-Verlag: Berlin)

Kropat J, Tottey S, Birkenbihl RP, Depege N, Huijser P, Merchant S (2005) A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. Proceedings of the National Academy of Sciences of the United States of America 102, 18730–18735.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kühlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nature Reviews. Molecular Cell Biology 5, 282–295.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kuper J, Llamas A, Hecht HJ, Mendel RR, Schwarz G (2004) Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism. Nature 430, 803–806.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Küpper H, Kroneck PMH (2005) Heavy metal uptake by plants and cyanobacteria. Metal Ions in Biological Systems 44, 97–144.
PubMed |
open url image1

Küpper H, Šetlík I, Šetliková E, Ferimazova N, Spiller M, Küpper FC (2003) Copper-induced inhibition of photosynthesis: limiting steps of in vivo copper chlorophyll formation in Scenedesmus quadricauda. Functional Plant Biology 30, 1187–1196.
Crossref | GoogleScholarGoogle Scholar | open url image1

Labbé S, Zhu Z, Thiele DJ (1997) Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. Journal of Biological Chemistry 272, 15951–15958.
Crossref | PubMed |
open url image1

La Fontaine S, Quinn JM, Nakamoto SS, Page MD, Göhre V, Moseley JL, Kropat J, Merchant S (2002) Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryotic Cell 1, 736–757.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Labbé S, Thiele DJ (1999) Pipes and wiring: the regulation of copper uptake and distribution in yeast. Trends in Microbiology 7, 500–505.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lanaras T, Moustakas M, Symeonidis L, Diamantoglou S, Karataglis S (1993) Plant metal content, growth responses and some photosynthetic measurements on field-cultivated wheat growing on ore bodies enriched in Cu. Physiologia Plantarum 88, 307–314.
CAS | Crossref |
open url image1

Le Jean M, Schikora A, Mari S, Briat JF, Curie C (2005) A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. The Plant Journal 44, 769–782.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lee J, Peña MM, Nose Y, Thiele DJ (2002) Biochemical characterization of the human copper transporter Ctr1. Journal of Biological Chemistry 277, 4380–4387.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lee S, Kim YY, Lee Y, An G (2007) Rice P1B-ATPase, OsHMA9, is a metal efflux protein. Plant Physiology 145, 831–842.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lidon FC, Henriques FS (1991) Limiting step in photosynthesis of rice plants treated with varying copper levels. Journal of Plant Physiology 138, 115–118.
CAS |
open url image1

Lidon FC, Henriques FS (1993) Changes in the thylakoid membrane polypeptide patterns triggered by excess Cu in rice. Photosynthetica 28, 109–117.
CAS |
open url image1

Lightbody JJ, Krogmann DW (1967) Isolation and properties of plastocyanin from Anabaena variabilis. Biochimica et Biophysica Acta 131, 508–515.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ling HQ, Pich A, Scholz G, Ganal MW (1996) Genetic analysis of two tomato mutants affected in the regulation of iron metabolism. Molecular & General Genetics 252, 87–92.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Lombardi L, Sebastiani L (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Science 168, 797–802.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

López-Millán AF, Ellis DR, Grusak MA (2004) Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Molecular Biology 54, 583–596.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Luna CM, González CA, Trippi VS (1994) Oxidative damage caused by excess of copper in oat leaves. Plant & Cell Physiology 35, 11–15.
CAS |
open url image1

Lutsenko S, Barnes NJ, Bartee MY, Dmitriev OL (2007) Function and regulation of human copper-transporting ATPases. Physiological Reviews 87, 1011–1046.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Maksymiec W, Russa R, Urbanik-Sypniewska T, Baszynski T (1994) Effect of excess Cu on the photosynthetic apparatus of runner bean leaves treated at two different growth stages. Physiologia Plantarum 91, 715–721.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Mariano ED, Jorge RA, Keltjens WG, Menossi M (2005) Metabolism and root exudation of organic acid anions under aluminium stress. Brazilian Journal of Plant Physiology 17, 157–172.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Markossian KA, Kurganov BI (2003) Copper chaperones, intracellular copper trafficking proteins. Function, structure, and mechanism of action. Biochemistry 68, 827–837.
CAS | PubMed |
open url image1

Marschner H (1995) ‘Mineral nutrition of higher plants.’ (Academic Press: London)

Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K , et al. (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology 126, 1646–1667.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mendel RR (2005) Molybdenum: biological activity and metabolism. Dalton Transactions 21, 3404–3409.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mengoni A, Gonnelli C, Hakvoort HWJ, Galardi F, Bazzicalupo M, Gabbrielli R, Schat H (2003) Evolution of copper-tolerance and increased expression of a 2b-type metallothionein gene in Silene paradoxa L. populations. Plant and Soil 257, 451–457.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Merchant S, Bogorad L (1986a) Rapid degradation of apoplastocyanin in Cu(II)-deficient cells of Chlamydomonas reinhardtii. Journal of Biological Chemistry 261, 15850–15853.
CAS | PubMed |
open url image1

Merchant S, Bogorad L (1986b) Regulation by copper of the expression of plastocyanin and cytochrome c552 in Chlamydomonas reinhardtii. Molecular and Cellular Biology 6, 462–469.
CAS | PubMed |
open url image1

Michaud AM, Bravin MN, Galleguillos M, Hinsinger P (2007) Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triricum turgidum durum L.) cultivated in Cu-contaminated, former vineyard soils. Plant and Soil 298, 99–111.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Mira H, Martínez-García F, Peñarrubia L (2001a) Evidence for the plant-specific intercellular transport of the Arabidopsis copper chaperone CCH. The Plant Journal 25, 521–528.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Mira H, Vilar M, Pérez-Raya E, Peñarrubia L (2001b) Functional and conformational properties of the exclusive C-domain from the Arabidopsis copper chaperone (CCH). The Biochemical Journal 357, 545–549.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Mira H, Vilar M, Esteve V, Martinell M, Kogan MJ, Giralt E, Salom D, Mingarro I, Peñarrubia L, Pérez-Paya E (2004) Ionic self-complementarity induces amyloid-like fibril formation in an isolated domain of a plant copper metallochaperone protein. BMC Structural Biology 4, 7.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Moller SG, McPherson MJ (1998) Developmental expression and biochemical analysis of the Arabidospsis atao1 gene encoding and H2O2-generating diamine oxidase. The Plant Journal 13, 781–791.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Mori S (1999) Iron acquisition by plants. Current Opinion in Plant Biology 2, 250–253.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Moseley JL, Page MD, Alder NP, Eriksson M, Quinn J, Soto F, Theg SM, Hippler M, Merchant S (2002) Reciprocal expression of two candidate di-iron enzymes affecting photosystem I and light-harvesting complex accumulation. The Plant Cell 14, 673–688.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223, 1178–1190.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Murphy A, Taiz L (1995) A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis. Plant Physiology 108, 29–38.
CAS | PubMed |
open url image1

Murphy AS, Eisenger WR, Shaff JE, Kochian LV, Taiz L (1999) Early copper-induced leakage of K+ from Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux. Plant Physiology 121, 1375–1382.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Nagae M, Nakata M, Takahashi Y (2008) Identification of negative cis-acting elements in response to copper in the chloroplastic iron superoxide dismutase gene of the moss Barbula unguiculata. Plant Physiology 146, 1687–1696.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Navari-Izzo F, Quartacci MF, Pinzino C, Dalla Vecchia F, Sgherri CLM (1998) Thylakoid-bound and stromal enzymes in wheat treated with excess copper. Physiologia Plantarum 104, 630–638.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Nersissian AM, Immoos C, Hill MG, Hart PJ, Williams G, Herrmann RG, Valentine JS (1998) Uclacyanins, stellacyanins and plantacyanins are distinct subfamilies of phytocyanins: plant-specific mononuclear blue copper proteins. Protein Science 7, 1915–1929.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. Journal of Biological Chemistry 275, 25057–25060.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ouzounidou G, Eleftheriou EP, Karataglis S (1992) Ecophysiological and ultraestructural effects of copper in Thlaspi ochroleucum (Cruciferae). Canadian Journal of Botany 70, 947–957.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Palmgren MG, Axelsen KB (1998) Evolution of P-type ATPases. Biochimica et Biophysica Acta 1365, 37–45.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Panou-Filotheou H, Basabalidis AM (2004) Root structural aspects associated with copper toxicity in oregano (Origanum vulgare subsp. hirtum). Plant Science 166, 1497–1504.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Panou-Filotheou H, Bosabalidis AM, Karataglis S (2001) Effects of copper toxicity on leaves of oregano (Origanum vulgare subsp. hirtum). Annals of Botany 88, 207–214.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Pätsikkä E, Aro E-M, Tyystjärvi E (1998) Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo. Plant Physiology 117, 619–627.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pätsikkä E, Kairavuo M, Sersen F, Aro E-M, Tyystjärvi E (2002) Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiology 129, 1359–1367.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Peña MMO, Lee J, Thiele DJ (1999) A delicate balance: homeostatic control of copper uptake and distribution. The Journal of Nutrition 129, 1251–1260.
PubMed |
open url image1

Pilon M, Abdel-Ghany SE, Cohu CM, Gogolin KA, Ye H (2006) Copper cofactor delivery in plant cells. Current Opinion in Plant Biology 9, 256–263.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Critical Reviews in Plant Sciences 21, 439–456.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Prasad MNV , Strzalka K (1999) Impact of heavy metals on photosynthesis. In ‘Heavy metal stress in plants’. (Eds MNV Prasad, J Hagemeyer) pp. 117–138. (Springer-Verlag: Berlin)

Pufahl RA, Singer CP, Peariso KL, Lin SJ, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE, O’Halloran TV (1997) Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278, 853–856.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Current Opinion in Chemical Biology 6, 171–180.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Puig S, Andrés-Colás N, García-Molina A, Peñarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant, Cell & Environment 30, 271–290.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Quartacci MF, Pinzino C, Sgherri CLM, Dalla Vecchia F, Navari-Izzo F (2000) Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. Physiologia Plantarum 108, 87–93.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Quinn JM, Barraco P, Eriksson M, Merchant S (2000) Coordinate copper- and oxygen-responsive Cyc6 and Cpx1 expression in Chlamydomonas is mediated by the same element. The Journal of Biological Chemistry 275, 6080–6089.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Quinn JM, Eriksson M, Moseley JL, Merchant S (2002) Oxygen deficiency responsive gene expression in Clamydomonas reinhardtii through a copper-sensing signal transduction pathway. Plant Physiology 128, 463–471.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Radisky D, Kaplan J (1999) Regulation of transition metal transport across the yeast plasma membrane. Journal of Biological Chemistry 274, 4481–4484.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet AM, Goffner D (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiology 129, 145–155.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2 −evolving organisms. Photosynthesis Research 60, 111–149.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Reeve WG, Tiwari RP, Kale NB, Dilworth MJ, Glenn AR (2002) ActP controls copper homeostasis in Rhizobium legominosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Molecular Microbiology 43, 981–991.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Roberts LA, Pierson AJ, Panaviene Z, Walker EL (2004) Yellow stripe1. Expanded roles for the maize iron-phytosiderophore transporter. Plant Physiology 135, 112–120.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Rodríguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283, 996–998.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rombolà AD, Gogorcena Y, Larbi A, Morales F, Balde E, Marangoni B, Tagliavini M, Abadía J (2005) Iron deficiency-induced changes in carbon fixation and leaf elemental composition of sugar beet (Beta vulgaris) plants. Plant and Soil 271, 39–45.
Crossref | GoogleScholarGoogle Scholar | open url image1

Römheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in gramineous species –an ecological approach. Plant and Soil 130, 127–134.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rutherford JC, Bird AJ (2004) Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryotic Cell 3, 1–13.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ruzsa SM, Scandalios JG (2003) Altered Cu metabolism and differential transcription of Cu/ZnSod genes in a Cu/ZnSOD-deficient mutant of maize: evidence for a Cu-responsive transcription factor. Biochemistry 42, 1508–1516.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sadmann G, Böger P (1980) Copper-mediated lipid peroxidation processes in photosynthetic membranes. Plant Physiology 66, 797–800.
Crossref | PubMed |
open url image1

Salim R, Al-Subu MM, Douleh A, Chenavier L, Hagemeyer J (1992) Effects of root and foliar treatments on carrot plants with lead and cadmium on the growth, uptake and the distribution of metals in treated plants. Journal of Environmental Science and Health. Part A 27, 1739–1758.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sancenón V, Puig S, Mira H, Thiele DJ, Peñarrubia L (2003) Identification of a copper transporter family in Arabidopsis thaliana. Plant Molecular Biology 51, 577–587.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sancenón V, Puig S, Mateu-Andrés I, Dorcey E, Thiele DJ, Peñarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. Journal of Biological Chemistry 279, 15348–15355.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sauvé S, McBride MB, Norvell WA, Hendershot WH (1997) Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter. Water, Air, and Soil Pollution 100, 133–149.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wirén N (2004) ZmYS1 functions as a proton-coupled symporter for photosyderophore- and nicotianamine-chelated metals. Journal of Biological Chemistry 279, 9091–9096.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Schaaf G, Schikora A, Harberle J, Vert G, Ludewig U, Briat JF, Curie C, von Wiren N (2005) A putative function for the Arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant & Cell Physiology 46, 762–774.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Schiavon M, Zhang LH, Abdel-Ghany SE, Pilon M, Malagoli M, Pilon-Smits EAH (2007) Variation in copper tolerance in Arabidopsis thaliana accessions Columbia, Landsberg erecta and Wassilewskija. Physiologia Plantarum 129, 342–350.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytologist 141, 1–26.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Schubert M, Petersson UA, Haas BJ, Funk C, Schroder WP, Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. Journal of Biological Chemistry 277, 8354–8365.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sedbrook JC, Carroll KL, Hung KF, Masson PH, Somerville CR (2002) The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth plant cell. The Plant Cell 14, 1635–1648.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Seigneurin-Berny D, Gravot A, Auroy P, Mazard C, Kraut A , et al. (2006) HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. Journal of Biological Chemistry 28, 2882–2892. open url image1

Shikanai T, Müller-Moulé P, Munekage Y, Niyogi KK, Pilon M (2003) PPA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. The Plant Cell 15, 1333–1346.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Solioz M, Vulpe C (1996) CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends in Biochemical Sciences 21, 237–241.
CAS | PubMed |
open url image1

Southron JL, Basu U, Taylor GJ (2004) Complementation of Saccharomycess cerevisiae ccc2 mutant by a putative P1B-ATPase from Brassica napus supports a copper-transporting function. FEBS Letters 566, 218–222.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology & Medicine 18, 321–336.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sudo E, Itouga M, Yoshida-Hatanaka K, Ono Y, Sakakibara H (2008) Gene expression and sensitivity in response to copper stress in rice leaves. Journal of Experimental Botany 59, 3465–3474.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. The Plant Cell 18, 2051–2065.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Tabata K, Kashiwagi S, Mori H, Ueguchi C, Mizuno T (1997) Cloning of a cDNA encoding a putative metal-transporting P-type ATPase from Arabidopsis thaliana. Biochimica et Biophysica Acta (BBA) – Biomembranes 1326, 1–6.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. The Plant Cell 15, 1263–1280.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Thomas JC, Davies EC, Malick FK, Endreszi C, Williams CR , et al. (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnology Progress 19, 273–280.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Trindade LM, Horváth BM, Bergervoet MJE, Visser RGF (2003) Isolation of a gene encoding a copper chaperone for copper/zinc superoxide dismutase and characterization of its promoter in potato. Plant Physiology 133, 618–629.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant, Cell & Environment 13, 195–206.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Van Hoof NA, Hassinen VH, Hakvoort HW, Ballintijn KF, Schat H, Verkleij JA, Ernst WH, Karenlampi SO, Tervahauta AI (2001) Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiology 126, 1519–1526.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Van Tichelen KK, Colpaert JV, Vangronsveld J (2001) Ectomycorrhizal protection of Pinus sylvestris against copper toxicity. New Phytologist 150, 203–213.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Van Vliet C, Anderson CR, Cobbet CS (1995) Copper-sensitive mutant of Arabidopsis thaliana. Plant Physiology 109, 871–878.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Vitória AP, Cunha M, Azevedo RA (2006) Ultrastructural changes of radish leaf exposed to cadmium. Environmental and Experimental Botany 58, 47–52.
Crossref | GoogleScholarGoogle Scholar | open url image1

Von Wiren N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both Fe(III) and Fe(II). Implications for metal transport in plants. Plant Physiology 119, 1107–1114.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Wallace A, Cha JW (1989) Interactions involving copper toxicity and phosphorous deficiency in bush bean plants grown in solutions of of low and high pH. Soil Science 147, 430–431.
CAS |
open url image1

Wang H, Shan X-q, Wen B, Zhang S, Wang Z-j (2004) Responses of antioxidative enzymes to accumulation of copper in a copper hyperaccumulator of Commoelina communis. Archives of Environmental Contamination and Toxicology 47, 185–192.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Waters BM, Chu H-H, DiDonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE, Walker EL (2006) Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiology 141, 1446–1458.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant, Cell & Environment 29, 950–963.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Weigel M, Varotto C, Pesaresi P, Finazzi G, Rappaport F, Salamini F, Leister D (2003) Plastocyanin is indispensable for photosynthetic electron flow in Arabidopsis thaliana. Journal of Biological Chemistry 278, 31286–31289.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Williams LE, Mills RF (2005) P1B-ATPases – an ancient family of transition metal pumps with diverse functions in plants. Trends in Plant Science 10, 491–502.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochimica et Biophysica Acta 1465, 104–126.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Wintz H, Vulpe C (2002) Plant copper chaperones. Biochemical Society Transactions 30, 732–735.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Wintz H, Fox T, Wu YY, Feng V, Chen WQ, Chang HS, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. Journal of Biological Chemistry 278, 47644–47653.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Woeste KE, Kieber JJ (2000) A strong loss of function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as rosette-lethal phenotype. The Plant Cell 12, 443–455.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Wójcik M, Tukiendorf A (2003) Response of wild type of Arabidopsis thaliana to copper stress. Biologia Plantarum 46, 79–84.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. Journal of Biological Chemistry 282, 16369–16378.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasisin Arabidopsis. The Plant Cell 21, 347–361.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yen M-R, Tseng Y-H, Saier MH (2001) Maize Yellow Stripe1, an iron-phytosiderophore uptake transporter, is a member of the oligopeptide transporter (OPT) family. Microbiology 147, 2881–2883.
CAS | PubMed |
open url image1

Yruela I (2005) Copper in plants. Brazilian Journal of Plant Physiology 17, 145–146.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Yruela I, Pueyo JJ, Alonso PJ, Picorel R (1996) Photoinhibition of photosystem II from higher plants: effect of copper inhibition. Journal of Biological Chemistry 271, 27408–27415.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zhou J, Goldsbrough PB (1995) Structure, organization and expression of the metallothionein gene family in Arabidopsis. Molecular Genetics and Genomics 248, 318–328.
CAS |
open url image1

Zhu Z, Labbé S, Peña MM, Thiele DJ (1998) Copper differentially regulates the activity and degradation of yeast Mac1 transcription factor. The Journal of Biological Chemistry 273, 1277–1280.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zhu H, Shipp E, Sanchez RJ, Liba A, Stine JE, Hart PJ, Gralla EB, Nersissian AM, Valentine JS (2000) Cobalt(2+) binding to human and tomato copper chaperone for superoxide dismutase: implications for the metal ion transfer mechanism. Biochemistry 39, 5413–5421.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1