CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 36(9)

Enhancement in leaf photosynthesis and upregulation of Rubisco in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny

P. V. Vara Prasad A D, Joseph C. V. Vu B, Kenneth J. Boote C, L. Hartwell Allen B

A Agronomy Department, 2004 Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA.
B United States Department of Agriculture – Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Chemistry Research Unit, Gainesville, FL 32608, USA.
C Agronomy Department, 304 Newell Hall, University of Florida, Gainesville, FL 32611, USA.
D Corresponding author. Email: vara@ksu.edu
PDF (616 KB) $25
 Export Citation


Rising atmospheric carbon dioxide (CO2) concentration and temperature will influence photosynthesis, growth and yield of agronomic crops. To investigate effects of elevated CO2 and high temperature on leaf gas exchanges, activities of Rubisco and phosphoenolpyruvate carboxylase (PEPC) and growth of grain sorghum (Sorghum bicolor L. Moench), plants were grown in controlled environments at day-time maximum/night-time minimum temperatures of 30/20°C or 36/26°C at ambient (350 µmol mol–1) or elevated (700 µmol mol–1) CO2. Gas-exchange rates, activities of Rubisco and PEPC and growth parameters (leaf, stem and total dry weights) were determined at different stages of leaf development. Between 6 and 25 days after leaf tip emergence, leaf carbon exchange rate (CER) of elevated CO2 plants was greater at 30/20°C and 36/26°C than that of ambient CO2 plants at the same temperatures. The positive response of CER to elevated CO2 was greater in young leaves than in old leaves. In young leaves, elevated CO2 enhanced Rubisco activity at 30/20°C and 36/26°C, whereas PEPC activity was not affected by elevated CO2 at 30/20°C but was marginally enhanced at 36/26°C. At 30/20°C, growth parameters were not affected by elevated CO2 until 50 days after sowing (DAS); at 36/26°C, they were progressively enhanced by elevated CO2 to as high as 49 to 62% by 50 DAS. Leaf CER and Rubisco activity were enhanced by elevated CO2 at early stages of leaf ontogeny for the C4 grain sorghum. Such enhancement should have a significant role in dry matter production under elevated CO2.

Keywords: climate change, dry matter production, heat stress, leaf development, leaf growth, Sorghum bicolor.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015