CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant function and evolutionary biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 37(11)

Photosynthesis and water-use efficiency of seedlings from northern Australian monsoon forest, savanna and swamp habitats grown in a common garden

Kim A. Orchard A, Lucas A. Cernusak A C, Lindsay B. Hutley A B

A School of Environmental and Life Sciences, Charles Darwin University, Darwin, NT 0909, Australia.
B School of Environmental Research, Charles Darwin University, Darwin, NT 0909, Australia.
C Corresponding author. Email: lucas.cernusak@cdu.edu.au
PDF (367 KB) $25
 Export Citation


Islands of monsoon rainforest and Melaleuca swamp punctuate vast tracts of savanna in monsoonal northern Australia. Seedlings of species from each of these habitat associations were grown in a common garden. Monsoon forest species had higher specific leaf area, lower photosynthetic capacity and lower photosynthetic light compensation points, and required lower irradiance to achieve 50% of light-saturated photosynthesis compared with savanna or swamp species. These traits probably contribute towards greater shade tolerance beneath dense monsoon-forest canopies, whereas savanna and swamp canopies are relatively open. Swamp species, especially two Melaleuca species, had high stomatal conductance and small CO2 drawdown during photosynthesis, and more negative leaf δ13C, compared with monsoon forest and savanna species. Higher stomatal conductance increases carbon uptake during photosynthesis and a high transpiration rate would increase transport of nutrients to absorbing surfaces in the root by mass flow. Thus, a strategy of high transpiration and low water-use efficiency appears to be favoured in swamp species compared with monsoon-forest and savanna species. Instantaneous measurements of the ratio of intercellular to ambient CO2 concentrations (ci/ca) explained 81% of variation in leaf δ13C across 44 species sampled in this and other studies, suggesting that leaf δ13C generally provides a robust proxy for comparisons of ci/ca, even when applied across species.

Keywords: carbon isotope ratio, Melaleuca, transpiration.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016