CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant function and evolutionary biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 42(2)

Heterotrimeric G-proteins involved in the MeJA regulated ion flux and stomatal closure in Arabidopsis thaliana

Suli Yan A B *, Shuitian Luo A B *, Shanshan Dong A B, Ting Zhang A B, Jingru Sun A B, Ningning Wang A B, Hongjun Yao A and Yingbai Shen A B C

A College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100 083, China.
B National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100 083, China.
C Corresponding author. Email: ybshen@bjfu.edu.cn

Functional Plant Biology 42(2) 126-135 http://dx.doi.org/10.1071/FP14162
Submitted: 14 June 2014  Accepted: 15 September 2014   Published: 15 October 2014


 
PDF (838 KB) $25
 Supplementary Material
 Export Citation
 Print
  
Abstract

Heterotrimeric G-proteins play an important role in plant signalling pathways. The plant hormone methyl jasmonate (MeJA) can induce stomatal closure in many plant species. The signal cascade in MeJA-induced stomatal closure has been studied previously. However, the function of G proteins in this process has not yet been evaluated. In this study, the stomatal movement induced by MeJA in the wild-type Arabidopsis thaliana (L. Heynh.) (WS), Gα subunit loss-of-function mutant gpa11 and gpa12 guard cells were measured. Further, the transmembrane ion flux (H+, Ca2+ and K+) and reactive oxygen species (ROS) experiments were performed in guard cells from WS, GDP-β-S pre-treated WS, gpa11 and gpa12 using non-invasive micro-test technique (NMT) and confocal technique. It was observed that the MeJA-induced stomatal closure was abolished in guard cells of gpa1 mutants. GDP-β-S pre-treatment and gpa1 mutants impaired the MeJA-activated H+ efflux, Ca2+ influx and K+ efflux. The accumulation of ROS in gpa11 and gpa12 guard cells was also lower than that in WS guard cells under MeJA treatment. These results suggested that Gα subunits are involved in regulating the signal events in JA signal pathway and stomatal closure.

Additional keywords: guard cell, heterotrimeric G-proteins, ion flux, MeJA.


References

Allen GJ, Kuchitsu K, Chu SP, Murata Y, Schroeder JI (1999) Arabidopsis abi1–1 and abi2–1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. The Plant Cell 11, 1785–1798.

Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, Tallman G, Tsien RY, Harper JF, Chory J, Schroeder JI (2000) Alternation of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289, 2338–2342.
CrossRef | CAS | PubMed |

Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373–399.
CrossRef | CAS | PubMed |

Blatt MR (1990) Potassium channel currents in intact stomatal guard cells: rapid enhancement by abscisic acid. Planta 180, 445–455.
CrossRef | CAS | PubMed |

Brown AM, Birnbaumer L (1990) Ionic channels and their regulation by G protein subunits. Annual Review of Physiology 52, 197–213.
CrossRef | CAS | PubMed |

Chen YL, Huang R, Xiao YM, Lü P, Chen J, Wang XC (2004) Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2. Plant Physiology 136, 4096–4103.
CrossRef | CAS | PubMed |

Cheng Y, Song C (2006) Hydrogen peroxide homeostasis and signaling in plant cells. Science in China. Series C, Life Sciences 49, 1–11.

Doerner P, Jørgensen JE, You R, Steppuhn J, Lamb C (1996) Control of root growth and development by cyclin expression. Nature 380, 520–523.
CrossRef | CAS | PubMed |

Evans NH (2003) Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. Plant Physiology 131, 8–11.
CrossRef | CAS | PubMed |

Gehring CA, Irving HR, McConchie R, Parish RW (1997) Jasmonates induce intracellular alkalinization and closure of Paphiopedilum guard cells. Annals of Botany 80, 485–489.
CrossRef | CAS |

Gelli A, Higgins VJ, Blumwald E (1997) Activation of plant plasma membrane Ca2+-permeable channels by race-specific fungal elicitors. Plant Physiology 113, 269–279.

He JM, Ma XG, Zhang Y, Sun TF, Xu FF, Chen YP, Liu X, Yue M (2013) Role and interrelationship of Gα protein, hydrogen peroxide, and nitric oxide in ultraviolet β-induced stomatal closure in Arabidopsis leaves. Plant Physiology 161, 1570–1583.
CrossRef | CAS | PubMed |

Hedrich R, Busch H, Raschke K (1990) Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO Journal 9, 3889–3892.

Hemerly AS, Ferreira P, de Almeida Engler J, Van Montagu M, Engler G, Inzé D (1993) cdc2a expression in Arabidopsis is linked with competence for cell division. The Plant Cell 5, 1711–1723.
CrossRef | CAS | PubMed |

Hepler JR, Gilman AG (1992) G proteins. Trends in Biochemical Sciences 17, 383–387.
CrossRef | CAS | PubMed |

Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424, 901–908.
CrossRef | CAS | PubMed |

Hochholdinger F, Park WJ, Feix GH (2001) Cooperative action of SLR1 and SLR2 is required for lateral root-specific cell elongation in maize. Plant Physiology 125, 1529–1539.
CrossRef | CAS | PubMed |

Irving HR, Gehring CA, Parish RW (1992) Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proceedings of the National Academy of Sciences of the United States of America 89, 1790–1794.
CrossRef | CAS | PubMed |

Islam MM, Hossain MA, Jannat R, Munemasa S, Nakamura Y, Mori IC, Murata Y (2010) Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA. Plant & Cell Physiology 51, 1721–1730.
CrossRef | CAS |

Johnston CA, Siderovski DP (2007) Receptor-mediated activation of heterotrimeric G-proteins: current structural insights. Molecular Pharmacology 72, 219–230.
CrossRef | CAS | PubMed |

Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H, Shimamoto K (1999) The small GTP-binding protein Rac is a regulator of cell death in plants. Proceedings of the National Academy of Sciences of the United States of America 96, 10 922–10 926.
CrossRef | CAS |

McAinsh MR, Clayton H, Mansfield TA, Hetherington AM (1996) Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiology 111, 1031–1042.

Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126, 969–980.
CrossRef | CAS | PubMed |

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends in Plant Science 9, 490–498.
CrossRef | CAS | PubMed |

Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007) The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiology 143, 1398–1407.
CrossRef | CAS | PubMed |

Murata Y, Pei ZM, Mori IC, Schroeder J (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD (P) H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1–1 and abi2–1 protein phosphatase 2C mutants. The Plant Cell 13, 2513–2523.

Okamoto H, Göbel C, Capper RG, Saunders N, Feussner I, Knight MR (2009) The alpha-subunit of the heterotrimeric G-protein affects jasmonate responses in Arabidopsis thaliana. Journal of Experimental Botany 60, 1991–2003.
CrossRef | CAS | PubMed |

Outlaw WH (1983) Current concepts on the role of potassium in stomatal movements. Physiologia Plantarum 59, 302–311.
CrossRef | CAS |

Pandey S, Chen JG, Jones AM, Assmann SM (2006) G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and post germination development. Plant Physiology 141, 243–256.
CrossRef | CAS | PubMed |

Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406, 731–734.
CrossRef | CAS | PubMed |

Porterfield DM, McLamore ES, Banks MK (2009) Microsensor technology for measuring H+ flux in buffered media. Sensors and Actuators. B, Chemical 136, 383–387.
CrossRef | CAS |

Punshon T, Hirschi K, Yang J, Lanzirotti A, Lai B, Guerinot ML (2012) The role of CAX1 and CAX3 in elemental distribution and abundance in Arabidopsis seed. Plant Physiology 158, 352–362.
CrossRef | CAS | PubMed |

Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452, 1002–1006.
CrossRef | CAS | PubMed |

Schroeder JI, Hagiwara S (1989) Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338, 427–430.
CrossRef |

Schroeder JI, Raschke K, Neher E (1987) Voltage dependence of K channels in guard-cell protoplasts. Proceedings of the National Academy of Sciences of the United States of America 84, 4108–4112.
CrossRef | CAS | PubMed |

Shabala S, Newman I, Whittington J, Juswono U (1998) Protoplast ion fluxes: their measurement and variation with time, position and osmoticum. Planta 204, 146–152.
CrossRef | CAS |

Shabala S, Shabala L, Gradmann D, Chen Z, Newman I, Mancuso S (2006) Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. Journal of Experimental Botany 57, 171–184.
CrossRef | CAS | PubMed |

Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiology 134, 1536–1545.
CrossRef | CAS | PubMed |

Sun J, Chen SL, Dai SX, Wang RG, Li NY, Shen X, Zhou XY, Lu CF, Zheng XJ, Hu ZM, Zhang ZK, Song J, Xu Y (2009) NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiology 149, 1141–1153.
CrossRef | CAS | PubMed |

Sun QP, Yu YK, Wan SX, Zhao FK, Hao YL (2010) Extracellular and intracellular calcium both involved in the jasmonic acid induced calcium mobilization in Arabidopsis thaliana. Scientia Agricultura Sinica 43, 942–949.

Vera-Estrella R, Higgins VJ, Blumwald E (1994) Plant defense response to fungal pathogens (II. G-protein-mediated changes in host plasma membrane redox reactions). Plant Physiology 106, 97–102.

White PJ (2000) Calcium channels in higher plants. Biochimica et Biophysica Acta 1465, 171–189.
CrossRef | CAS | PubMed |

Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452, 1007–1011.
CrossRef | CAS | PubMed |

Wickman K, Clapham DE (1995) Ion channel regulation by G proteins. Physiological Reviews 75, 865–885.

Xu Y, Sun T, Yin LP (2006) Application of non-invasive microsensing system to simultaneously measure both H+ and O2 fluxes around the pollen tube. Journal of Integrative Plant Biology 48, 823–831.
CrossRef | CAS |

Yan SL, Dong SS, Zhang RX, Shen YB (2014) Relationship of H2O2 accumulation and PM H+-ATPase in Arabidopsis thaliana guard cells response to MeJA. Acta Botanica. Boreali.-Occidentalia. Sinica 34, 0298–0303.


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2016