CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article     |     Next >>   Contents Vol 24(6)

A Comparison of Scenarios for the Effect of Global Climate Change on Cotton Growth and Yield

K. Raja Reddy, Harry F. Hodges and James M. McKinion

Australian Journal of Plant Physiology 24(6) 707 - 713
Published: 1997

Abstract

If global surface temperatures change as projected because of radiative and physiological effects of a changing environment, we should expect important changes in crop production in the 21st Century. Experiments were conducted at ambient and twice ambient atmospheric CO2 concentrations at five temperatures. The 1995 temperature in Mississippi was used as a reference with the other temperatures being 1995 minus 2˚C, and 1995 plus 2, 5 and 7˚C. Daily and seasonal variation and amplitudes were maintained. Seedlings had 4–6 times as much leaf area and dry weight at 20 d after emergence when grown at 28˚C as at 23˚C (1995 ambient) average temperature during that growth period. Number of days to first square, flower, and open boll decreased as temperature increased. Double atmospheric CO2 did not affect these developmental rates. Temperatures above 28˚C, or 1995 average whole-season temperatures, were detrimental to mid- and late-season boll retention and growth. No fruits were retained to maturity at 1995 plus 5 or 7˚C. However, whole season vegetative growth was not significantly reduced by temperature 5–7˚C above the 1995 ambient conditions. Twice ambient CO2 caused about 40% increase in vegetative dry matter accumulation across temperatures. In a separate experiment, similar results were obtained on fruiting cotton grown at a range of temperatures based on long-term average US Midsouth July temperatures. Therefore, if global warming occurs as predicted, food and fibre production in such high-temperature and humid environments may be more limited to vegetative structures and the animals that consume vegetative structures.



Full text doi:10.1071/PP96138

© CSIRO 1997

blank image
Subscriber Login
Username:
Password:  

 
PDF (355 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015