CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 2(2)

Subdivision of C4-Pathway Species Based on Differing C4 Acid Decarboxylating Systems and Ultrastructural Features

MD Hatch, T Kagawa and S Craig

Australian Journal of Plant Physiology 2(2) 111 - 128
Published: 1975

Abstract

A selection of C4 species was surveyed to determine the relationship between their content of C4 acid decarboxylating enzymes, the activities of several other enzymes implicated in the C4 pathway, and their anatomical and ultrastructural features. The species examined clearly fell into three groups according to whether they contained high levels of either NADP malic enzyme (EC 1.1.1.40), phosphoenolpyruvate carboxykinase (EC 4.1.1.49) or NAD malic enzyme (EC 1.1 .1.39). The occurrence of high NADP malic enzyme activity was always associated with higher NADP malate dehydrogenase activity, while those species distinguished by high activities of either of the other two decarboxylases invariably contained high aspartate aminotransferase and alanine amino- transferase activities. Each of these decarboxylating enzymes was located in bundle sheath cells. NAD malic enzyme, but not phosphoenolpyruvate carboxykinase, was associated with mitochondria.

Light and electron micrographs revealed differences between these groups with respect to the intracellular location of chloroplasts and mitochondria in bundle sheath cells, and the content and ultrastructure of mitochondria. The trend was for species with high NAD malic enzyme to contain the most mitochondria in the bundle sheath cells with apparently the most extensively developed cristae membrane systems. However, mitochondrial respiratory enzyme activities were similar for the three groups of species.

The basic similarities and differences between the three groups of C4 plants distinguished by their differing C4 acid decarboxylating systems are discussed, and schemes for the probable photosynthetic reactions in bundle sheath cells are presented. A nomenclature to distinguish between these groups is proposed.



Full text doi:10.1071/PP9750111

© CSIRO 1975

blank image
Subscriber Login
Username:
Password:  

 
PDF (1.3 MB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014