CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 4(5)

Contribution of the Root System to Nitrate Assimilation in Whole Cotton Plants.

JW Radin

Australian Journal of Plant Physiology 4(5) 811 - 819
Published: 1977

Abstract

Cotton (Gossypium hirsutum L.) is a species in which most nitrate is assimilated in the green shoot. A physiological role for the small amount of nitrate reductase activity in the roots can be questioned on the basis of relative magnitude. In this investigation, cotton plants were grown on nutrient solutions containing either 1 or 5 mM nitrate, and balance sheets were developed for the transport and metabolism of nitrate and reduced nitrogen in the root and shoot during exponential growth. At either nitrate level, assimilation in the roots was adequate to supply all the nitrogen for root growth. However, some of the reduced nitrogen was exported in the xylem, leaving a net deficit of about 10% at 1 mM nitrate and 36% at 5 mM nitrate. This deficit was presumably satisfied by reduced nitrogen from the shoot. Thus, at these two nitrate concentrations, root growth apparently depended more upon nitrogen assimilated in the roots themselves than upon nitrogen from the shoot. The different fates of nitrogen assimilated in the root and in the shoot may be related to the demonstrated differential regulation of nitrate reductase activity in these two sites.



Full text doi:10.1071/PP9770811

© CSIRO 1977

blank image
Subscriber Login
Username:
Password:  

 
PDF (405 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015