CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article     |     Next >>   Contents Vol 19(1)

Photosynthetic Response to Light and Nutrients in Sun-Tolerant and Shade-Tolerant Rainforest Trees. I. Growth, Leaf Anatomy and Nutrient Content.

WA Thompson, PE Kriedemann and IE Craig

Australian Journal of Plant Physiology 19(1) 1 - 18
Published: 1992

Abstract

Seedling trees of Argyrodendron sp., A. trifoliolaturn, Flindersia brayleyana and Toona australis were grown for c. 180 days under one of three light regimes with either of two nutrient levels (6 treatments in all). Light regimes spanned the range of environmental conditions which these species would normally experience in northern Queensland rainforest: deep shade (1.3 mol quanta m-2 day-1, equivalent to forest floor), moderate light (5.6 mol quanta m-2 day-1, comparable to midcanopy), and strong light (23 mol quanta m-2 day-1, matching daily irradiance of exposed crowns).

Long-term shade tolerance in Argyrodendron sp. and A. trifoliolaturn was associated with limited responses in growth and leaf anatomy to low light and nutrients. Starch accumulation in leaves under all treatments, and especially low nutrients, implied that supply of photoassimilate exceeded demand. Such a conservative carbon economy, plus the accumulation of stem P reserves, even in a weak light environment, is consistent with a protracted existence as part of a forest floor community. By contrast, shade-intolerant Toona is an early successional species and lacks such adaptive features. Instead, light and nutrients had a strong interactive effect on growth. Flindersia, with a broad tolerance to sun and shade, was intermediate in growth response and leaf adjustment, which is consistent with its success across a wide size range of forest gaps.



Full text doi:10.1071/PP9920001

© CSIRO 1992

blank image
Subscriber Login
Username:
Password:  

 
PDF (1.1 MB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015