CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article     |     Next >>   Contents Vol 22(5)

Photosynthetic Responses of Thirteen Pasture Species to Elevated CO2 and Temperature

DH Greer, WA Laing and BD Campbell

Australian Journal of Plant Physiology 22(5) 713 - 722
Published: 1995

Abstract

Thirteen common pasture species, (eleven C3 and two C4), were grown in controlled environments at 12/7, 18/13 and 28/23ÂșC and at 350 and 700 ppm CO2 to evaluate the effects of elevated CO2 on their photosynthetic responses. Photosynthesis was measured at the growth temperatures and at both 350 and 700 ppm CO2. In C3 species, short-term (within minutes) increases in CO2 had the greatest effect on photosynthesis, with an average of 50-60% higher rates in plants exposed to 700 ppm CO2 at each temperature. However, there was a continuum of response between the C3 species whereas C4 species were unaffected by short-term changes in CO2. There was also a long-term (4-8 weeks) response to high CO2, with an average of about 40-50% higher rates of photosynthesis, with some response by C4 species. Both short- and long-term responses were negatively correlated with the photosynthetic rate of each species at 350 ppm CO2 and all species were less efficient at converting photosynthate to dry matter at elevated CO2. These data show clearly that photosynthesis of these cool temperate pasture species can respond to elevated CO2, especially at low temperatures. This will have consequences for predicting the potential effects of climate change, accompanied by rising CO2, on pasture ecosystems.



Full text doi:10.1071/PP9950713

© CSIRO 1995

blank image >
 
PDF (706 KB) $25
 Export Citation
 Print
  
  
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014