CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 23(3)

Sink Strength May Be the Key to Growth and Nitrogen Responses in N-Deficient Wheat at Elevated CO2

GS Rogers, PJ Milham, M Gillings and JP Conroy

Australian Journal of Plant Physiology 23(3) 253 - 264
Published: 1996


The influence of elevated CO2 (350, 550 and 900 μL L-1) and N supplies ranging from deficient to excess (0-133 mg N kg-1 soil week-1) on the leaf N concentration and shoot growth of wheat (Triticum aestivum L.), cultivar Hartog, was investigated. Shoot growth was 30 % greater at 550 μL L-1 compared to ambient CO2 at all levels of N supply. When the CO2 concentration was increased to 900 μL L-1, there was no increase in shoot growth at low N supply but it more than doubled at high N supply (67 mg N kg-1 soil week-1). Growth effects were closely matched by changes in sink development, suggesting that sink strength, mediated through N supply controlled the shoot growth response to elevated CO2. The shoot N concentration was lower at each level of CO2 enrichment and the greatest effect (30% reduction) occurred at 900 μL CO2 L-1, 33 mg N kg-1 soil week-1. The effect of high CO2 on shoot N concentration diminished as N supply increased and, at the highest N addition rate, there was only a 7% reduction. Changes in foliar N concentration due to CO2 enrichment were closely correlated with lower soluble protein concentration, accounting for 58 % of the total leaf N reduction. Ribulose- IS-bisphosphate carboxylase/oxygenase (Rubisco) levels were also reduced at high CO2 and N was allocated away from Rubisco and into other soluble proteins at high CO2 when N supply was low. Non- structural carbohydrate concentration (dry weight basis) was greatest at 900 μL CO2 L-1 and low N supply and may have reduced Rubisco concentration via a feed-back response. Critical foliar N concentrations (N concentration at 90 % of maximum shoot growth) were reduced from 43 mg g-1 at ambient CO2 to 39 and 38 mg g-1 at 550 and 900 μL CO2 L-1, respectively. Elevated CO2, at N supplies of 0-17 mg N kg-1 soil week-1, reduced flour protein concentration by 9-13 %.

Full text doi:10.1071/PP9960253

© CSIRO 1996

blank image
Subscriber Login

PDF (866 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015