CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 23(5)

Chlorophyll and Carotenoid Composition in Leaves of Euonymus kiautschovicus Acclimated to Different Degrees of Light Stress in the Field

B Demmig-Adams and WW Iii Adams

Australian Journal of Plant Physiology 23(5) 649 - 659
Published: 1996


The response of carotenoid and chlorophyll composition to the actual degree of excess light experienced in the natural environment was examined in differently angled leaves of the sclerophyllous shrub Euonymus kiautschovicus. Increasing light stress caused a greater conversion of the xanthophyll cycle to zeaxanthin and antheraxanthin as well as thermal dissipation of a greater fraction of the absorbed light. Increasing light stress was also associated with increasing chlorophyll alb ratios and increases in the pool size of the xanthophyll cycle. The response of all other carotenoids to light stress was less pronounced than that of the xanthophyll cycle pool. While the ratio of β-carotene or lutein to chlorophyll increased with increasing light stress, the ratio of neoxanthin to chlorophyll remained constant. Only the (taxonomically restricted) carotenoids lactucaxanthin and ±-carotene decreased relative to chlorophyll with increasing light stress. These findings are consistent with an increased emphasis on energy dissipation over light collection with increasing light stress, afforded presumably by a decreased ratio of major, peripheral (bulk chlorophyll-binding) to minor, proximal (xanthophyll cycle-rich) light-harvesting complexes of photosystem II. These responses to light stress within a single species could not be extrapolated to comparisons among different groups of species.

Full text doi:10.1071/PP9960649

© CSIRO 1996

blank image
Subscriber Login

PDF (863 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014