Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

C4 rice: a challenge for plant phenomics

Robert T. Furbank A E , Susanne von Caemmerer B , John Sheehy C and Gerry Edwards D

A CSIRO Plant Industry and High Resolution Plant Phenomics Centre, GPO Box 1600, Canberra, ACT 2601, Australia.

B Research School of Biology, Australian National University, GPO Box 475, Canberra, ACT 2601, Australia.

C International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.

D School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.

E Corresponding author. Email: robert.furbank@csiro.au

This paper originates from a presentation at the 1st International Plant Phenomics Symposium, Canberra, Australia, April 2009.

Functional Plant Biology 36(11) 845-856 http://dx.doi.org/10.1071/FP09185
Submitted: 21 July 2009  Accepted: 15 September 2009   Published: 5 November 2009

Abstract

There is now strong evidence that yield potential in rice (Oryza sativa L.) is becoming limited by ‘source’ capacity, i.e. photosynthetic capacity or efficiency, and hence the ability to fill the large number of grain ‘sinks’ produced in modern varieties. One solution to this problem is to introduce a more efficient, higher capacity photosynthetic mechanism to rice, the C4 pathway. A major challenge is identifying and engineering the genes necessary to install C4 photosynthesis in rice. Recently, an international research consortium was established to achieve this aim. Central to the aims of this project is phenotyping large populations of rice and sorghum (Sorghum bicolor L.) mutants for ‘C4-ness’ to identify C3 plants that have acquired C4 characteristics or revertant C4 plants that have lost them. This paper describes a variety of plant phenomics approaches to identify these plants and the genes responsible, based on our detailed physiological knowledge of C4 photosynthesis. Strategies to asses the physiological effects of the installation of components of the C4 pathway in rice are also presented.

Additional keywords: carbon isotope discrimination, chlorophyll fluorescence, CO2 compensation point, Kranz anatomy, photosynthesis, photosynthetic efficiency.


References

Badger MR 1985 Photosynthetic oxygen-exchange. Annual Review of Plant Physiology and Plant Molecular Biology 36 27 53 doi:10.1146/annurev.arplant.36.1.27

Badger MR von Caemmerer S Ruuska S Nakano H 2000 Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 355 1433 1446 doi:10.1098/rstb.2000.0704

Baker N 2008 Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59 89 113 doi:10.1146/annurev.arplant.59.032607.092759

Bernacchi CJ Portis AR Nakano H von Caemmerer S Long SP 2002 Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiology 130 1992 1998 doi:10.1104/pp.008250

Brooks A Farquhar GD 1985 Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta 165 397 406 doi:10.1007/BF00392238

Cannell RQ Bruns WA Moss DN 1969 A search for high net photosynthetic rate among soybean genotypes. Crop Science 9 840 841

Chonan N Kaneko M Kawahara H Matsuda T 1981 Ultrastructure of the large vascular bundles of the rice plant. Nihon Sakumotsu Gakkai Kiji 50 323 331


Cousins AB Badger MR Von Caemmerer S 2006 Carbonic anhydrase and its influence on carbon isotope discrimination during C4 photosynthesis: insights from antisense RNA in Flaveria bidentis. Plant Physiology 141 232 242
doi:10.1104/pp.106.077776

Delgado E Azcon-Bieto J Aranda X Palazon J Medrano H 1992 Leaf photosynthesis and respiration of high CO2-grown tobacco plants selected for survival under CO2 compensation point conditions. Plant Physiology 98 949 954 doi:10.1104/pp.98.3.949

Delgado E Parry MAJ Lawlor DW Keys AJ Medrano H 1993 Photosynthesis, ribulose-1,5-bisphosphate carboxylase and leaf characteristics of Nicotiana tabacum L. genotypes selected by survival at low CO2 concentrations. Journal of Experimental Botany 44 1 7 doi:10.1093/jxb/44.1.1

Dever LV Blackwell RD Fullwood NJ Lacuesta M Leegood RC Onek LA Pearson M Lea PJ 1995 The isolation and characterization of mutants of the C4 photosynthetic pathway. Journal of Experimental Botany 46 1363 1376

Earl HJ Tollenaar M 1998 Relationship between thylakoid electron transport and photosynthetic CO2 uptake in leaves of three maize (Zea mays L.) hybrids. Photosynthesis Research 58 245 257
doi:10.1023/A:1006198821912

Edwards GE Baker NR 1993 Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynthesis Research 37 89 102 doi:10.1007/BF02187468

Edwards GE Furbank RT Hatch MD Osmond CB 2001 What does it take to be C4? Lessons from the evolution of C4 photosynthesis. Plant Physiology 125 46 49 doi:10.1104/pp.125.1.46

Edwards GE Franceschi VR Voznesenskaya EV 2004 Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annual Review of Plant Biology 55 173 196 doi:10.1146/annurev.arplant.55.031903.141725

Evans LT Fischer RA 1999 Yield potential: its definition, measurement, and significance. Crop Science 39 1544 1551

Evans JR Sharkey TD Berry JA Farquhar GD 1986 Carbon isotope discrimination measured concurrently with gas-exchange to investigate CO2 diffusion in leaves of higher plants. Australian Journal of Plant Physiology 13 281 292
doi:10.1071/PP9860281

Farquhar GD 1983 On the nature of carbon isotope discrimination in C4 species. Australian Journal of Plant Physiology 10 205 226 doi:10.1071/PP9830205

Farquhar GD von Caemmerer S Berry JA 1980 A biochemical-model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149 78 90 doi:10.1007/BF00386231

Farquhar GD O’Leary MH Berry JA 1982 On the relationship between carbon isotope discrimination and the intercellular carbon-dioxide concentration in leaves. Australian Journal of Plant Physiology 9 121 137 doi:10.1071/PP9820121

Farquhar GD Ehleringer JR Hubick KT 1989 Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40 503 537 doi:10.1146/annurev.pp.40.060189.002443

Food and Agricultural Organisation of the United Nations Food Security Statistics (2008) Food and agricultural statistics global outlook. Food and Agricultural Organisation of the United Nations. Available at http://faostat.fao.org/Portals/_Faostat/documents/pdf/world.pdf [Verified 7 October 2009]

Furbank RT Badger MR 1982 Photosynthetic oxygen-exchange in attached leaves of C4 monocotyledons. Australian Journal of Plant Physiology 9 553 558 doi:10.1071/PP9820553

Furbank RT Walker DA 1986 Chlorophyll a fluorescence as a quantitative probe of photosynthesis: effects of CO2 concentration during gas transients on chlorophyll fluorescence in spinach leaves. New Phytologist 104 207 213 doi:10.1111/j.1469-8137.1986.tb00645.x

Furbank RT Chitty JA Jenkins CLD Taylor WC Trevanion SJ von Caemmerer S Ashton AR 1997 Genetic manipulation of key photosynthetic enzymes in the C4 plant Flaveria bidentis. Australian Journal of Plant Physiology 24 477 485 doi:10.1071/PP97028

Galmes J Flexas J Keys AJ Cifre J Mitchell RAC Madgwick PJ Haslam RP Medrano H Parry MAJ 2005 Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant, Cell & Environment 28 571 579 doi:10.1111/j.1365-3040.2005.01300.x

Genty B Briantais J-M Baker N 1989 The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990 87 92

Ghannoum O Siebke K Von Caemmerer S Conroy JP 1998 The photosynthesis of young Panicum C-4 leaves is not C-3-like. Plant, Cell & Environment 21 1123 1131
doi:10.1046/j.1365-3040.1998.00348.x

Gunning BES (2007) ‘Plant cell biology.’ (CD-ROM). Available from http://www.plantcellbiologyondvd.com/

Hattersley PW Watson L 1975 Anatomical parameters for predicting photosynthetic pathways of grass leaves: the ‘maximal lateral cell count’ and the ‘maximum cells distant count’. Phytomorphology 25 325 333

Henderson S von Caemmerer S Farquhar GD 1992 Short-term measurements of carbon isotope discrimination in several C4 species. Australian Journal of Plant Physiology 19 263 285
doi:10.1071/PP9920263

Holaday AS Chollet R 1983 Photosynthetic/photorespiratory carbon metabolism in the C3–C4 intermediate species, Moricandia arvensis and Panicum milioides. Plant Physiology 73 740 745 doi:10.1104/pp.73.3.740

Janacek SH Trenkamp S Palmer B Brown NJ Parsley K et al 2009 Photosynthesis in cells around veins of the C3 plant Arabidopsis thaliana is important for both the shikimate pathway and leaf senescence as well as contributing to plant fitness. The Plant Journal 59 329 343 doi:10.1111/j.1365-313X.2009.03873.x

Jordan DB Ogren WL 1984 The CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Planta 161 308 313 doi:10.1007/BF00398720

Krall JP Edwards GE Ku MSB 1991 Quantum yield of photosystem II and efficiency of CO2 fixation in Flaveria (Asteraceae) species under varying light and CO2. Australian Journal of Plant Physiology 18 369 383 doi:10.1071/PP9910369

Krishnan A Guideroni E An G Hsing YC Han C et al 2009 Mutant resources in rice for functional genomics of the grasses. Plant Physiology 149 165 170 doi:10.1104/pp.108.128918

Ku MSB Wu JR Dai ZY Scott RA Chu C Edwards GE 1991 Photosynthetic and photorespiratory characteristics of Flaveria species. Plant Physiology 96 518 528 doi:10.1104/pp.96.2.518

Laisk AK (1977) ‘Kinetics of photosynthesis and photorespiration in C3-plants.’ (Nauka: Moscow)

Laisk A Edwards GE 1998 Oxygen and electron flow in C4 photosynthesis – mehler reaction, photorespiration and CO2 concentration in the bundle sheath. Planta 205 632 645 doi:10.1007/s004250050366

Leegood RC (2000) Transport during C4 photosynthesis. In ‘Photosynthesis: physiology and metabolism’. (Eds RC Leegood, TD Sharkey, S von Caemmerer) pp. 459–469 (Kluwer Academic Publishers: The Netherlands)

Leegood RC 2002 C4 photosynthesis: principles of CO2 concentration and prospects for introduction into C3 plants. Journal of Experimental Botany 53 581 590 doi:10.1093/jexbot/53.369.581

Leegood RC 2008 Roles of bundle sheath cells in leaves of C3 plants. Journal of Experimental Botany 59 1663 1673 doi:10.1093/jxb/erm335

Manning DT Campbell AJ Chen TM Tolbert NE Smith EW 1984 Detection of chemicals inhibiting photorespiratory senescence in a large scale survival chamber. Plant Physiology 76 1060 1064 doi:10.1104/pp.76.4.1060

Mayne BC Dee AM Edwards GE 1975 Photosynthesis in mesophyll protoplasts and bundle sheath cells of various type of C4 plants. III. Fluorescence emission spectra, delayed light emission, and P700 content. Zeitschrift Pflanzenphysiology 74 275 291

Menz KM Moss DN Cannell RQ Brun WA 1969 Screening for photosynthetic efficiency. Crop Science 9 692 694


Nasyrov YS 1978 Genetic control of photosynthesis and improving of crop productivity. Annual Review of Plant Biology 29 215 237


Nelson T Dengler NG 1992 Photosynthetic tissue differentiation in C4 plants. International Journal of Plant Physiology 153 93 105


Oberhuber W Edwards GE 1993 Temperature dependence of the linkage of quantum yield of photosystem II to CO2 fixation in C4 and C3 plants. Plant Physiology 101 507 512


O’Leary MH 1981 Carbon isotope fractionations in plants. Phytochemistry 20 553 567
doi:10.1016/0031-9422(81)85134-5

Parry MAJ Andralojc PJ Mitchell RAC Madgwick PJ Keys AJ 2003 Manipulation of Rubisco: the amount, activity, function and regulation. Journal of Experimental Botany 54 1321 1333 doi:10.1093/jxb/erg141

Peisker M 1979 Conditions of low, and oxygen-independent, CO2 compensation concentrations in C4 plants as derived from a simple model. Photosynthetica 13 198 207

Peng S Khush GS Virk P Tang Q Zou Y 2008 Progress in ideotype breeding to increase rice yield potential. Field Crops Research 108 32 38
doi:10.1016/j.fcr.2008.04.001

Pfundel E Neubohn B 1999 Assessing photosystem I and II distribution in leaves from C4 plants using confocal laser scanning microscopy. Plant, Cell & Environment 22 1569 1577 doi:10.1046/j.1365-3040.1999.00521.x

Ruuska SA Badger MR Andrews TJ von Caemmerer S 2000 Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction. Journal of Experimental Botany 51 357 368 doi:10.1093/jexbot/51.suppl_1.357

Sage RF 2004 The evolution of C4 photosynthesis. The New Phytologist 161 341 370 doi:10.1111/j.1469-8137.2004.00974.x

Sage TL Sage RF 2009 The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice. Plant & Cell Physiology 50 756 772 doi:10.1093/pcp/pcp033

Sheehy JE Dionora MJA Mitchell PL 2001 Spikelet numbers, sink size and potential yield in rice. Field Crops Research 71 77 85 doi:10.1016/S0378-4290(01)00145-9

Sheehy JE , Ferrer AB , Mitchell PL , Elmido-Mabilangan A , Pablico P , Dionora MJA (2007 a) How the rice crop works and why it needs a new engine. In ‘Charting new pathways to C4 rice’. (Eds JE Sheehy, PL Mitchell, B Hardy) pp. 27–36. (International Rice Research Institute: Los Banos, Philippines)

Sheehy JE , Mitchell PL , Hardy B (Eds) (2007 b) ‘Charting new pathways to C4 rice.’ (International Rice Research Institute: Los Banos, Philippines)

Smith EW Tolbert NE Ku HS 1976 Variables affecting the CO2 compensation point. Plant Physiology 58 143 146 doi:10.1104/pp.58.2.143

Vogan PJ Frohlich MW Sage RF 2007 The functional significance of C3–C4 intermediate traits in Heliotropium L. (Boraginaceae): gas exchange perspectives. Plant, Cell & Environment 30 1337 1345 doi:10.1111/j.1365-3040.2007.01706.x

von Caemmerer S 1989 A model of photosynthetic CO2 assimilation and carbon isotope discrimination in leaves of certain C3–C4 intermediate species. Planta 178 463 474 doi:10.1007/BF00963816

von Caemmerer S 1992 Carbon isotope discrimination in C3–C4 intermediates. Plant, Cell & Environment 15 1063 1072 doi:10.1111/j.1365-3040.1992.tb01656.x

von Caemmerer S , Furbank RT (1999) Modeling of C4 photosynthesis. In ‘C4 plant biology’. (Eds RF Sage and R Monson) pp. 169–207. (Academic Press: San Diego, CA)

von Caemmerer S (2000) ‘Biochemical models of leaf photosynthesis. Vol. 2.’ (CSIRO Publishing: Collingwood, Australia)

von Caemmerer S Evans JR 1991 Determination of the average partial-pressure of CO2 in chloroplasts from leaves of several C3 plants. Australian Journal of Plant Physiology 18 287 305 doi:10.1071/PP9910287

von Caemmerer S Furbank RT 2003 The C4 pathway: an efficient CO2 pump. Photosynthesis Research 77 191 207 doi:10.1023/A:1025830019591

von Caemmerer S , Quick WP (2000) Rubisco: physiology in vivo. In ‘Photosynthesis: physiology and metabolism’. (Eds RC Leegood, TD Saharkey, S von Caemmerer) pp. 85–113. (Kluwer Academic Press: Dordrecht, The Netherlands)

von Caemmerer S Evans JR Hudson GS Andrews TJ 1994 The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195 88 97

von Caemmerer S , Evans JR , Cousins AB , Badger MR , Furbank RT (2007) C4 photosynthesis and CO2 diffusion. In ‘Charting new pathways to C4 rice’. (Eds JE Sheehy, PL Mitchell, B Hardy) pp. 95–115. (International Rice Research Institute: Los Banos, Philippines)

Widholm JM Ogren WL 1969 Photorespiratory-induced senescence of plants under conditions of low carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America 63 668 675
doi:10.1073/pnas.63.3.668

Zhu X-G Long SP Ort DR 2008 What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology 19 153 159 doi:10.1016/j.copbio.2008.02.004



Export Citation