Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology

On the role of H2O2 in the recovery of grapevine (Vitis vinifera cv. Prosecco) from Flavescence dorée disease

Rita Musetti A F , Rosita Marabottini B , Maurizio Badiani C , Marta Martini A , Luigi Sanità di Toppi D , Stefano Borselli A , Michele Borgo E and Ruggero Osler A

A Dipartimento di Biologia Applicata alla Difesa delle Piante, Università di Udine, via delle Scienze 208, I-33100 Udine, Italy.

B Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S.C. De Lellis, I-01100 Viterbo, Italy.

C Dipartimento di Biotecnologie per il Monitoraggio Agro-Alimentare ed Ambientale, Università Mediterranea di Reggio Calabria, Facoltà di Agraria, I-89129 Reggio Calabria, Italy.

D Dipartimento di Biologia Evolutiva e Funzionale, Sezione di Biologia Vegetale, Università di Parma, viale G. P. Usberti 11/A, I-43100 Parma, Italy.

E CRA-Istituto Sperimentale per la Viticoltura, Conegliano, Italy.

F Corresponding author. Email:

Functional Plant Biology 34(8) 750-758
Submitted: 17 November 2006  Accepted: 22 May 2007   Published: 23 July 2007


In the present work, we compared hydrogen peroxide (H2O2) localisation and the activities/contents of antioxidant enzymes and metabolites in the leaf tissues of grapevine (Vitis vinifera L. cv. Prosecco) plants showing different sanitary status, namely diseased by Flavescence dorée, healthy or recovered. Polymerase chain reaction analysis revealed that the pathogen associated with Flavescence dorée (proposed as ‘Candidatus Phytoplasma vitis’) was detected in the leaf tissues of symptomatic plants, but was not observed in either the healthy or recovered plants. Hydrogen peroxide accumulated in the phloem plasmalemma of recovered grapevine leaves, but was not detected in either healthy or diseased material. When compared to diseased or healthy plants, recovered plants had distinctly lower extractable levels of catalase and ascorbate peroxidase, two enzymes primarily involved in the scavenging of excess H2O2 generated in different cell compartments. Among healthy, diseased and recovered leaves there was no significant difference in the amount of 2-thiobarbituric acid-reactive substances, which are assumed to reflect the extent of peroxidative breakdown of membrane lipids. Therefore, it is suggested that recovery from Flavescence dorée disease in grapevine might be associated with a long-term, sustained and tissue-specific accumulation of H2O2 in leaves, which reduces numbers or prevents further infection by Flavescence dorée phytoplasma. Recovered grapevine plants might be able to achieve such H2O2 accumulation through a selective and presumably stable downregulation of enzymatic H2O2 scavengers, without altering the levels of other antioxidant systems and without incurring an increased oxidative risk.

Additional keywords: antioxidants, hydrogen peroxide, phytoplasma.


This research was funded by the Italian Ministry for Agriculture and Forestry, finalised project ‘I giallumi della vite: un fattore limitante per le produzioni vitivinicole’, and by the Italian Ministry for University and Research, PRIN Project, 2005, Rome. The authors are grateful to Dr Laurence Cantrill for English text revision.


Ahrens U, Seemüller E (1992) Detection of DNA of plant pathogenic mycoplasmalike organisms by a polymerase chain reaction that amplifies a sequence of the 16S rRNA gene. Phytopathology 82, 828–832. open url image1

Angelini E, Filippin L, Michelini C, Bellotto D, Borgo M (2006) High occurrence of Flavescence dorée phytoplasma early in the season on grapevines infected with grapevine yellows. Vitis 45(3), 1–2. open url image1

Belli G , Fortusini A , Osler R , Amici A (1973) Presenza di una malattia del tipo “Flavescence dorée” in vigneti dell’oltrepò pavese. Rivista di Patologia Vegetale 9(1), 49–56.

Bertamini M, Nedunchezhian N, Tomasi F, Grando S (2002) Phytoplasma [Stolbur-subgroup (Bois Noir-BN)] infection inhibits photosynthetic pigments, ribulose-1,5-biphosphatecarboxylase and photosynthetic activities in field grown grapevine (Vitis vinifera L. cv. Chardonnay) leaves. Physiological and Molecular Plant Pathology 61, 357–366.
CrossRef | open url image1

Bestwick CS, Brown IR, Bennett MH, Mansfield JW (1997) Localisation of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv. phaseolicola. The Plant Cell 9(2), 209–221.
CrossRef | PubMed | open url image1

Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. Journal of Experimental Botany 53, 1367–1376.
CrossRef | PubMed | open url image1

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry 72, 248–254.
CrossRef | PubMed | open url image1

Caudwell A (1961) Les phénoménes de rétablissement chez la Flavescence dorée de la vigne. Annales des Epiphyties 12, 347–354. open url image1

Caudwell A, Larrue J, Tassart V, Boidron R, Grenan S, Leguay M, Bernard P (1994) Caractére “porteur de la flavescence dorée” chez les vignes porte-greffes, en particulier le 3309 Couderc et le Fercal. Agronomie 14, 83–94. open url image1

Chamnongpol S, Willekens H, Langebartels C, Van Montagu M, Inze D, Van Camp W (1996) Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light. The Plant Journal 10, 491–503.
CrossRef | open url image1

Chen Z, Malamy J, Henning J, Conrath U, Sánchez-Casas P, Silva H, Ricigliano J, Klessig DF (1995) Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proceedings of the National Academy of Sciences of the United States of America 92, 4134–4137.
CrossRef | PubMed | open url image1

Choi YH, Tapias EC, Kim HK, Lefeber AWM, Erkelens C, Verhoeven JThJ, Brzin J, Zel J, Verpoorte R (2004) Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using H-NMR spectroscopy and multivariate data analysis. Plant Physiology 135, 2398–2410.
CrossRef | PubMed | open url image1

Credi R (1994) Mycoplasma-like organisms associated with a grapevine yellows disease occurring in Italy. Journal of Phytopathology 141, 113–120. open url image1

De Knecht JA, Van Dillen M, Koevoets PLM, Schat H, Verkleji JAC, Ernst WHO (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris: chain length distribution and sulphide incorporation. Plant Physiology 104, 255–261.
PubMed |
open url image1

Deng S, Hiruki D (1991) Amplification of 16S rRNA genes from culturable and non culturable mollicutes. Journal of Microbiological Methods 14, 53–61.
CrossRef | open url image1

Foyer C, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell & Environment 28, 1056–1071.
CrossRef | open url image1

Gundersen DE, Lee IM (1996) Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea 35, 144–151. open url image1

Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189–198.
CrossRef | PubMed | open url image1

Langebartels C, Wohlgemuth H, Kschieschan S, Grün S, Sandermann H (2002) Oxidative burst and cell death in ozone-exposed plants. Plant Physiology and Biochemistry 40, 567–576.
CrossRef | open url image1

Lee IM, Gundersen-Rindal DE, Davis RE, Bartoszyk M (1998) Revised classification scheme of phytoplasmas based on RFLP analyses of rRNA and ribosomal protein gene sequences. International Journal of Systematic Bacteriology 48, 1153–1169. open url image1

Lee IM, Davis RE, Gundersen-Rindal DE (2000) Phytoplasma: phytopathogenic mollicutes. Annual Review of Microbiology 54, 221–255.
CrossRef | PubMed | open url image1

Loi N, Ermacora P, Ferrini F, Carraro L, Osler R (2002) Trasmissione sperimentale del fitoplasma degli scopazzi del melo da piante “recovered” e sintomatiche di melo. Petria 12, 373–374. open url image1

Martini M, Murari E, Mori N, Bertaccini A (1999) Identification and epidemic distribution of two flavescence dorée-related phytoplasmas in Veneto (Italy). Plant Disease 83, 925–930.
CrossRef |
open url image1

Martini M, Botti S, Marcone C, Marzachì C, Casati P, Bianco PA, Benedetti R, Bertaccini A (2002) Genetic variability among Flavescence dorée phytoplasmas from different origins in Italy and France. Molecular and Cellular Probes 16, 197–208.
CrossRef | PubMed | open url image1

Meignoz R, Boudon-Padieu E, Larrue J, Caudwell A (1992) Flavescence dorée de la vigne. Presence de MLO et effets cytopathogénes associés, dans le liber de la vigne. Journal of Phytopathology 134, 1–9. open url image1

Musetti R, Scaramagli S, Vighi C, Pressacco L, Torrigiani P, Favali MA (1999) The involvement of polyamines in phytoplasma-infected periwinkle (Catharanthus roseus L.) plants. Plant Biosystems 133, 37–45. open url image1

Musetti R, Sanità di Toppi L, Ermacora P, Favali MA (2004) Recovery in apple trees infected with the apple proliferation phytoplasma: an ultrastructural and biochemical study. Phytopathology 94, 203–208.
CrossRef | open url image1

Musetti R, Sanità di Toppi L, Martini M, Ferrini F, Loschi A, Favali MA, Osler R (2005) Hydrogen peroxide localisation and antioxidant status in the recovery of apricot plants from European stone fruit yellows. European Journal of Plant Pathology 112, 53–61.
CrossRef | open url image1

Osler R , Loi N , Carraro L , Ermacora P , Refatti E (1999) Recovery in plants affected by phytoplasmas. In ‘Proceedings of the 5th Congress of European Foundation for Plant Pathology’. (Ed. Società Italiana di Patologia Vegetale) pp. 589–592. (Taormina, Italy)

Osler R , Carraro L , Ermacora P , Ferrini F , Loi N , Loschi A , Martini M , Mutton PB , Refatti R (2003) Roguing: a controversial practice to eradicate grape yellows caused by phytoplasmas. In ‘Proceedings of the 14th International Council for the Study of Virus and Virus-like Diseases of the Grapevine Meeting’. (Ed. Consiglio Nazionale delle Ricerche – Istituto di Virologia Vegetale – Bari) p. 68. (Locorotondo (Bari), Italy)

Paolacci AR, Badiani M, D’Annibale A, Fusari A, Matteucci G (1997) Antioxidants and photosynthesis in the leaves of Triticum durum Desf seedlings acclimated to non-stressing high temperature. Journal of Plant Physiology 150, 381–387. open url image1

Sanità di Toppi L, Marabottini R, Vattuone Z, Musetti R, Favali MA, Sorgonà A, Badiani M (2005) Cell wall immobilisation and antioxidant status of Xanthoria parietina thalli exposed to cadmium. Functional Plant Biology 32(7), 611–618.
CrossRef | open url image1

Schneider B , Seemüller E , Smart C , Kirkpatrick BC (1995) Phylogenetic classification of plant pathogenic mycoplasmalike organisms or phytoplasmas. In ‘Molecular and Diagnostic Procedures in Mycoplasmology’. (Eds S Razin, JG Tully) pp. 369–380. (Academic Press: San Diego)

Tan PY, Whitlow T (2001) Physiological responses of Catharanthus roseus (periwinkle) to ash yellows phytoplasmal infection. The New Phytologist 150, 757–769.
CrossRef | open url image1

The IRPCM Phytoplasma/Spiroplasma Working Team – Phytoplasma Taxonomy Group (2004) “Candidatus Phytoplasma”, a taxon for the wall-less, non helical prokaryotes that colonise plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology 54, 1243–1255.
CrossRef | PubMed | open url image1

Vanacker H, Harbinson J, Ruisch J, Carver TLW, Foyer CH (1998) Antioxidant defences of the apoplast. Protoplasma 205, 129–140.
CrossRef | open url image1

Wang SY, Jiao HJ, Faust M (1991) Changes in ascorbate, glutathione, and related enzyme activities during thidiazuron-induced bud break of apple. Physiologia Plantarum 82, 231–236.
CrossRef | open url image1

Rent Article (via Deepdyve) Export Citation Cited By (32)